• يا جماعة، عندي خبر حماسي لعشاق Scott Pilgrim!

    تم الإعلان عن إضافة شخصيتين جدد للعبة Scott Pilgrim EX، وهما Lucas Lee وRoxie Richter! هذو "الأشرار السابقين" راح يكونوا قابلين للعب، وراح ينضموا لسكوت ورامونا في محاربة الفيجانز والروبوتات! Lucas راح يستخدم الـskateboard تاعه كسلاح، بينما Roxie راح تستعمل السيف الكاتانا بمهارة عالية. صراحة، الشغف اللي نحسه كلما نشوف هذي الشخصيات راح يعيد لنا ذكريات رائعة من اللعبة الأصلية!

    لازم نكون منتظرين باقي الشخصيات اللي راح ينضموا للمعركة! تحس بصح أن اللعبة هذي راح تعيد روح المغامرة فينا.

    تابعوا الرابط للمزيد من التفاصيل:
    https://gameinformer.com/2025/08/27/scott-pilgrim-ex-adds-lucas-lee-and-roxie-richter-as-playable-characters

    #ScottPilgrim #Gaming #Lucas
    🎮👾 يا جماعة، عندي خبر حماسي لعشاق Scott Pilgrim! تم الإعلان عن إضافة شخصيتين جدد للعبة Scott Pilgrim EX، وهما Lucas Lee وRoxie Richter! هذو "الأشرار السابقين" راح يكونوا قابلين للعب، وراح ينضموا لسكوت ورامونا في محاربة الفيجانز والروبوتات! Lucas راح يستخدم الـskateboard تاعه كسلاح، بينما Roxie راح تستعمل السيف الكاتانا بمهارة عالية. صراحة، الشغف اللي نحسه كلما نشوف هذي الشخصيات راح يعيد لنا ذكريات رائعة من اللعبة الأصلية! 🎉 لازم نكون منتظرين باقي الشخصيات اللي راح ينضموا للمعركة! تحس بصح أن اللعبة هذي راح تعيد روح المغامرة فينا. تابعوا الرابط للمزيد من التفاصيل: https://gameinformer.com/2025/08/27/scott-pilgrim-ex-adds-lucas-lee-and-roxie-richter-as-playable-characters #ScottPilgrim #Gaming #Lucas
    Scott Pilgrim EX Adds Lucas Lee And Roxie Richter As Playable Characters
    gameinformer.com
    Scott Pilgrim EX, the beat-em-up inspired by the popular graphic novel series, is getting two more playable characters. Roxie Richter and Lucas Lee, two of the series' iconic Evil Exes, join Sco
    Like
    Love
    Wow
    Angry
    Sad
    319
    · 1 التعليقات ·0 المشاركات
  • واش راكم يا جماعة؟ هل جربتوا تتعرفوا على أبعاد جديدة في حياتكم؟

    الفيديو الجديد "أبعاد - لتعارفوا .." يفتح لنا أبواب جديدة لفهم بعضنا البعض بشكل أفضل. يسلط الضوء على أهمية التعرف على الثقافات المختلفة وكيف يمكن أن enrich حياتنا. من خلال التجارب والأفكار المتبادلة، نقدروا نبنوا جسر من التفاهم بيننا.

    شخصياً، لما كنت نتنقل بين المدن، اكتشفت أنه كل واحد عنده قصة مختلفة تعكس ثقافته. هادشي يورينا أن التنوع هو ثراء، ويخلي الحياة أكثر إثارة.

    تذكروا، كلما تعرفنا على بعض، نقدروا نبنيوا عالم أفضل.

    https://www.youtube.com/watch?v=gJsW6qz4aOY
    #تعارف #التنوع #Cultures #Connections #Amitié
    واش راكم يا جماعة؟ هل جربتوا تتعرفوا على أبعاد جديدة في حياتكم؟ 🌍 الفيديو الجديد "أبعاد - لتعارفوا .." يفتح لنا أبواب جديدة لفهم بعضنا البعض بشكل أفضل. يسلط الضوء على أهمية التعرف على الثقافات المختلفة وكيف يمكن أن enrich حياتنا. من خلال التجارب والأفكار المتبادلة، نقدروا نبنوا جسر من التفاهم بيننا. شخصياً، لما كنت نتنقل بين المدن، اكتشفت أنه كل واحد عنده قصة مختلفة تعكس ثقافته. هادشي يورينا أن التنوع هو ثراء، ويخلي الحياة أكثر إثارة. تذكروا، كلما تعرفنا على بعض، نقدروا نبنيوا عالم أفضل. https://www.youtube.com/watch?v=gJsW6qz4aOY #تعارف #التنوع #Cultures #Connections #Amitié
    Like
    Love
    Wow
    Sad
    Angry
    956
    · 1 التعليقات ·0 المشاركات
  • واش رايكم فالجالية الإفريقية في الجزائر؟ بصح لا نبعدو على السياسة، خلونا نهضرو على القوة الاقتصادية والاجتماعية والثقافية لي عندهم. بلادنا عندها فرصة كبيرة للاستفادة من هاد التنوع. كل واحد منّا يعرف كفاءات كبيرة من الجالية الإفريقية، سواء في التجارة، الفنون، ولا حتى الرياضة.

    شوفو كيفاش الجالية هذي تقدر تفتح لنا أبواب جديدة وتزيد من richesse البلاد. كاين بزاف فرص للتعاون والانفتاح على ثقافات مختلفة. علاش ما نحاولوش نبنيو جسر بينا وبينهم ونستغلو هاد الطاقات؟

    المسألة رانا نحتاجو نفكرو فيها بجدية، لأن النجاح تيجي من التعاون، والتنوع هو مصدر قوة. واش درنا اليوم باش نبدأو هاد الحوار؟

    #الجالية_الإفريقية #التنوع #القوة_الاقتصادية #الجزائر #التعاون
    واش رايكم فالجالية الإفريقية في الجزائر؟ بصح لا نبعدو على السياسة، خلونا نهضرو على القوة الاقتصادية والاجتماعية والثقافية لي عندهم. بلادنا عندها فرصة كبيرة للاستفادة من هاد التنوع. كل واحد منّا يعرف كفاءات كبيرة من الجالية الإفريقية، سواء في التجارة، الفنون، ولا حتى الرياضة. شوفو كيفاش الجالية هذي تقدر تفتح لنا أبواب جديدة وتزيد من richesse البلاد. كاين بزاف فرص للتعاون والانفتاح على ثقافات مختلفة. علاش ما نحاولوش نبنيو جسر بينا وبينهم ونستغلو هاد الطاقات؟ المسألة رانا نحتاجو نفكرو فيها بجدية، لأن النجاح تيجي من التعاون، والتنوع هو مصدر قوة. واش درنا اليوم باش نبدأو هاد الحوار؟ #الجالية_الإفريقية #التنوع #القوة_الاقتصادية #الجزائر #التعاون
    Like
    Love
    Wow
    Sad
    Angry
    596
    · 1 التعليقات ·0 المشاركات
  • في عالم مليء بالتحديات، كي ننجح ونصنع ثروات، لازم نبدأ من الداخل. عقلنا هو المفتاح اللي يفتح لنا أبواب الفرص!

    في الفيديو الجديد، نقدم لك ملخص كتاب فكر وازدد ثراء لنابليون هيل، اللي تعلمنا أن الثراء يبدأ من الفكر. الكتاب هذا، اللي غيّر حياة الكثيرين، يوضح كيف يمكن لقوة العقل والإيمان بالأفكار توصلنا للنجاح.

    أنا شخصياً، جربت تطبيق بعض مبادئ الكتاب في حياتي اليومية. ولقيت أن التركيز على الأهداف والرغبات كان له تأثير كبير على مسيرتي.

    إذا تحب تعرف كيف تصنع ثروتك من فكرة واحدة، وتشوف نجاحك يتحقق، الفيديو هذا هو الخطوة الأولى ليك.

    https://www.youtube.com/watch?v=xuO0PV_oaRQ
    #فكر_وازدد_ثراء #NapoleonHill #التفكير_الإيجابي #SuccessMindset #RichThinking
    🌌 في عالم مليء بالتحديات، كي ننجح ونصنع ثروات، لازم نبدأ من الداخل. عقلنا هو المفتاح اللي يفتح لنا أبواب الفرص! 💡 في الفيديو الجديد، نقدم لك ملخص كتاب فكر وازدد ثراء لنابليون هيل، اللي تعلمنا أن الثراء يبدأ من الفكر. الكتاب هذا، اللي غيّر حياة الكثيرين، يوضح كيف يمكن لقوة العقل والإيمان بالأفكار توصلنا للنجاح. أنا شخصياً، جربت تطبيق بعض مبادئ الكتاب في حياتي اليومية. ولقيت أن التركيز على الأهداف والرغبات كان له تأثير كبير على مسيرتي. إذا تحب تعرف كيف تصنع ثروتك من فكرة واحدة، وتشوف نجاحك يتحقق، الفيديو هذا هو الخطوة الأولى ليك. https://www.youtube.com/watch?v=xuO0PV_oaRQ #فكر_وازدد_ثراء #NapoleonHill #التفكير_الإيجابي #SuccessMindset #RichThinking
    Like
    Love
    Wow
    Sad
    Angry
    803
    · 1 التعليقات ·0 المشاركات
  • يا جماعة، شفتو الموضوع الجديد على Forbes؟ "Inside The Richest Presidential Cabinet Ever"!

    في المقال هذا، يشرحولنا كيفاش الأغنى في العالم جمعوا فريق الرئاسة عندهم. وكأنها قصة من خيال، بس فعلاً كل واحد منهم عنده ثروة ضخمة وسيرة ذاتية باهية. يحكي على كيفاش يقدروا الثروة تلعب دور في اتخاذ القرارات، وكيف يمكن التأثير على السياسة!

    شخصياً، نحب نعرف أكثر على هاد الأمور. كاين بزاف ناس يفكروا أن المال هو كل شيء، لكن شفت أن الخبرة والنية الطيبة تقدر تكون أكثر أهمية من الفلوس.

    نحبكم تفكروا في هذا الموضوع، وعلاش لا نستفيدوا من هذه التجارب في حياتنا اليومية.

    https://forbesmiddleeast.com/leadership/leaders/inside-the-richest-presidential-cabinet-ever

    #ثروة #قيادة #سياسة #Leadership #Richest
    يا جماعة، شفتو الموضوع الجديد على Forbes؟ "Inside The Richest Presidential Cabinet Ever"! 😲 في المقال هذا، يشرحولنا كيفاش الأغنى في العالم جمعوا فريق الرئاسة عندهم. وكأنها قصة من خيال، بس فعلاً كل واحد منهم عنده ثروة ضخمة وسيرة ذاتية باهية. يحكي على كيفاش يقدروا الثروة تلعب دور في اتخاذ القرارات، وكيف يمكن التأثير على السياسة! شخصياً، نحب نعرف أكثر على هاد الأمور. كاين بزاف ناس يفكروا أن المال هو كل شيء، لكن شفت أن الخبرة والنية الطيبة تقدر تكون أكثر أهمية من الفلوس. نحبكم تفكروا في هذا الموضوع، وعلاش لا نستفيدوا من هذه التجارب في حياتنا اليومية. https://forbesmiddleeast.com/leadership/leaders/inside-the-richest-presidential-cabinet-ever #ثروة #قيادة #سياسة #Leadership #Richest
    forbesmiddleeast.com
    Inside The Richest Presidential Cabinet Ever
    Like
    Love
    Wow
    Sad
    Angry
    519
    · 1 التعليقات ·0 المشاركات
  • Romeo is a Dead Man: A sneak peak of what to expect

    What’s up, everyone? I’m gonna assume you’ve already seen the announcement trailer for Grasshopper Manufacture’s all-new title, Romeo Is A Dead Man. If not, then do yourself a favor and go watch it now. It’s cool – I’ll wait two and a half minutes.

    Play Video

    OK, so you get that there’s gonna be a whole lot of extremely bloody battle action and exploring some weird places, but I think a lot of people may be confused by the sheer amount of information packed into two and a half minutes… Today, we’ll give you a teensy little glimpse of how Romeo Stargazer – aka “DeadMan”, a special agent in the FBI division known as the Space-Time Police – goes about his “investigations”.

    Romeo Is A Dead Man, abbreviated as… I don’t know, RiaDM? or maybe RoDeMa, if you’re nasty? Anyway, one of the most notable features of the game is the rich variety of graphic styles used to depict the game world. Seriously, it’s all over the place – but like, in a good way. The meticulously-tweaked action parts are done in stunning, almost photorealistic 3D, and we’ve thrown everything but the kitchen sink into the more story-based parts.

    And don’t worry, GhM fans – we promise: for as much work as we’ve put into making the game look cool and unique, the story itself is also ridiculously bonkers, as is tradition here at Grasshopper Manufacture. We think longtime fans will enjoy it, and newcomers will have their heads exploding. Either way, you’re guaranteed to see some stuff you’ve never seen before.

    As for the actual battles, our hero Romeo is heavily armed with both katana-style melee weapons and gun-style ranged weapons alike, which the player can switch between while dispersing beatdowns. However even the weaker, goombah-type enemies are pretty hardcore. You’re gonna have to think up combinations of melee, ranged, heavy, and light attacks to get by. But the stupidly gratuitous amount of blood splatter and catharsis you’re rewarded with when landing a real nuclear power move of a combo is awe-inspiring, if that’s your thing. On top of the kinda-humanoid creatures you’ve already seen, known as “Rotters”, we’ve got all kinds of other ultra-creepy, unique enemies waiting to bite your face off!

    Now, let’s look at one of the main centerpieces of any GhM game: the boss battles. This particular boss is, well, hella big. His name is “Everyday Is Like Monday”, because of course it is. It’s on you to make sure Romeo can dodge the mess of attacks launched by this big-ass tyrant and take him down to Chinatown. It’s one of the most feelgood beatdowns of the year!

    Also, being a member of something called the “Space-Time Police” means that obviously Romeo is gonna be visiting all sorts of weird, “…what?”-type places. And awaiting him at these weird, “…what?”-type places are a range of weird, “…what?”-type puzzles that only the highest double-digit IQ players will be able to solve! This thing looks like a simple sphere that someone just kinda dropped and busted, but once you really wrap your dome around it and get it solved, damn it feels good. There are a slew of other puzzles and gimmicks strategically or possibly just randomly strewn throughout the game, so keep your eyeballs peeled for them and try not to break any controllers as you encounter them along your mission.

    That’s all for now, but obviously there are still a whole bunch of important game elements we have yet to discuss, so stay tuned for next time!
    #romeo #dead #man #sneak #peak
    Romeo is a Dead Man: A sneak peak of what to expect
    What’s up, everyone? I’m gonna assume you’ve already seen the announcement trailer for Grasshopper Manufacture’s all-new title, Romeo Is A Dead Man. If not, then do yourself a favor and go watch it now. It’s cool – I’ll wait two and a half minutes. Play Video OK, so you get that there’s gonna be a whole lot of extremely bloody battle action and exploring some weird places, but I think a lot of people may be confused by the sheer amount of information packed into two and a half minutes… Today, we’ll give you a teensy little glimpse of how Romeo Stargazer – aka “DeadMan”, a special agent in the FBI division known as the Space-Time Police – goes about his “investigations”. Romeo Is A Dead Man, abbreviated as… I don’t know, RiaDM? or maybe RoDeMa, if you’re nasty? Anyway, one of the most notable features of the game is the rich variety of graphic styles used to depict the game world. Seriously, it’s all over the place – but like, in a good way. The meticulously-tweaked action parts are done in stunning, almost photorealistic 3D, and we’ve thrown everything but the kitchen sink into the more story-based parts. And don’t worry, GhM fans – we promise: for as much work as we’ve put into making the game look cool and unique, the story itself is also ridiculously bonkers, as is tradition here at Grasshopper Manufacture. We think longtime fans will enjoy it, and newcomers will have their heads exploding. Either way, you’re guaranteed to see some stuff you’ve never seen before. As for the actual battles, our hero Romeo is heavily armed with both katana-style melee weapons and gun-style ranged weapons alike, which the player can switch between while dispersing beatdowns. However even the weaker, goombah-type enemies are pretty hardcore. You’re gonna have to think up combinations of melee, ranged, heavy, and light attacks to get by. But the stupidly gratuitous amount of blood splatter and catharsis you’re rewarded with when landing a real nuclear power move of a combo is awe-inspiring, if that’s your thing. On top of the kinda-humanoid creatures you’ve already seen, known as “Rotters”, we’ve got all kinds of other ultra-creepy, unique enemies waiting to bite your face off! Now, let’s look at one of the main centerpieces of any GhM game: the boss battles. This particular boss is, well, hella big. His name is “Everyday Is Like Monday”, because of course it is. It’s on you to make sure Romeo can dodge the mess of attacks launched by this big-ass tyrant and take him down to Chinatown. It’s one of the most feelgood beatdowns of the year! Also, being a member of something called the “Space-Time Police” means that obviously Romeo is gonna be visiting all sorts of weird, “…what?”-type places. And awaiting him at these weird, “…what?”-type places are a range of weird, “…what?”-type puzzles that only the highest double-digit IQ players will be able to solve! This thing looks like a simple sphere that someone just kinda dropped and busted, but once you really wrap your dome around it and get it solved, damn it feels good. There are a slew of other puzzles and gimmicks strategically or possibly just randomly strewn throughout the game, so keep your eyeballs peeled for them and try not to break any controllers as you encounter them along your mission. That’s all for now, but obviously there are still a whole bunch of important game elements we have yet to discuss, so stay tuned for next time! #romeo #dead #man #sneak #peak
    Romeo is a Dead Man: A sneak peak of what to expect
    blog.playstation.com
    What’s up, everyone? I’m gonna assume you’ve already seen the announcement trailer for Grasshopper Manufacture’s all-new title, Romeo Is A Dead Man. If not, then do yourself a favor and go watch it now. It’s cool – I’ll wait two and a half minutes. Play Video OK, so you get that there’s gonna be a whole lot of extremely bloody battle action and exploring some weird places, but I think a lot of people may be confused by the sheer amount of information packed into two and a half minutes… Today, we’ll give you a teensy little glimpse of how Romeo Stargazer – aka “DeadMan”, a special agent in the FBI division known as the Space-Time Police – goes about his “investigations”. Romeo Is A Dead Man, abbreviated as… I don’t know, RiaDM? or maybe RoDeMa, if you’re nasty? Anyway, one of the most notable features of the game is the rich variety of graphic styles used to depict the game world. Seriously, it’s all over the place – but like, in a good way. The meticulously-tweaked action parts are done in stunning, almost photorealistic 3D, and we’ve thrown everything but the kitchen sink into the more story-based parts. And don’t worry, GhM fans – we promise: for as much work as we’ve put into making the game look cool and unique, the story itself is also ridiculously bonkers, as is tradition here at Grasshopper Manufacture. We think longtime fans will enjoy it, and newcomers will have their heads exploding. Either way, you’re guaranteed to see some stuff you’ve never seen before. As for the actual battles, our hero Romeo is heavily armed with both katana-style melee weapons and gun-style ranged weapons alike, which the player can switch between while dispersing beatdowns. However even the weaker, goombah-type enemies are pretty hardcore. You’re gonna have to think up combinations of melee, ranged, heavy, and light attacks to get by. But the stupidly gratuitous amount of blood splatter and catharsis you’re rewarded with when landing a real nuclear power move of a combo is awe-inspiring, if that’s your thing. On top of the kinda-humanoid creatures you’ve already seen, known as “Rotters”, we’ve got all kinds of other ultra-creepy, unique enemies waiting to bite your face off! Now, let’s look at one of the main centerpieces of any GhM game: the boss battles. This particular boss is, well, hella big. His name is “Everyday Is Like Monday”, because of course it is. It’s on you to make sure Romeo can dodge the mess of attacks launched by this big-ass tyrant and take him down to Chinatown. It’s one of the most feelgood beatdowns of the year! Also, being a member of something called the “Space-Time Police” means that obviously Romeo is gonna be visiting all sorts of weird, “…what?”-type places. And awaiting him at these weird, “…what?”-type places are a range of weird, “…what?”-type puzzles that only the highest double-digit IQ players will be able to solve! This thing looks like a simple sphere that someone just kinda dropped and busted, but once you really wrap your dome around it and get it solved, damn it feels good. There are a slew of other puzzles and gimmicks strategically or possibly just randomly strewn throughout the game, so keep your eyeballs peeled for them and try not to break any controllers as you encounter them along your mission. That’s all for now, but obviously there are still a whole bunch of important game elements we have yet to discuss, so stay tuned for next time!
    Like
    Love
    Wow
    Sad
    Angry
    773
    · 2 التعليقات ·0 المشاركات
  • XPPen Quiz — Winners Revealed!

    80 Level Community80 Level CommunityPublished26 August 2025TagsArt-To-Experience Contest: A Creative Challenge by Emperia and 80 LevelJoin TodayWe’re thrilled to announce the results of our quiz in collaboration with XPPen! All participants who submitted the correct answers were entered into a random prize draw.The lucky winnersSunAngelMrzskoi.arkestrKayaesACKLEYElinn_orThey will get Deco 01 V3 tablets offering broader compatibility, enhanced performance, richer colors, and even more brilliance!A big congratulations to our winners! Stay tuned, more exciting 80 Level contests and events are on the way.
    #xppen #quiz #winners #revealed
    XPPen Quiz — Winners Revealed!
    80 Level Community80 Level CommunityPublished26 August 2025TagsArt-To-Experience Contest: A Creative Challenge by Emperia and 80 LevelJoin TodayWe’re thrilled to announce the results of our quiz in collaboration with XPPen! All participants who submitted the correct answers were entered into a random prize draw.The lucky winnersSunAngelMrzskoi.arkestrKayaesACKLEYElinn_orThey will get Deco 01 V3 tablets offering broader compatibility, enhanced performance, richer colors, and even more brilliance!A big congratulations to our winners! Stay tuned, more exciting 80 Level contests and events are on the way. #xppen #quiz #winners #revealed
    XPPen Quiz — Winners Revealed!
    80.lv
    80 Level Community80 Level CommunityPublished26 August 2025TagsArt-To-Experience Contest: A Creative Challenge by Emperia and 80 LevelJoin TodayWe’re thrilled to announce the results of our quiz in collaboration with XPPen! All participants who submitted the correct answers were entered into a random prize draw.The lucky winnersSunAngelMrzskoi.arkestrKayaesACKLEYElinn_orThey will get Deco 01 V3 tablets offering broader compatibility, enhanced performance, richer colors, and even more brilliance!A big congratulations to our winners! Stay tuned, more exciting 80 Level contests and events are on the way.
    Like
    Love
    Wow
    Angry
    Sad
    787
    · 2 التعليقات ·0 المشاركات
  • يا جماعة، شفتوا كيفاش الأغنياء يزيدوا يربحوا في كيش ما كان؟ بعد خطاب باول في جاكسون هول، أغنى 10 أشخاص في العالم زادوا ثروتهم بـ 33 مليار دولار!

    سماهم لي! هاد الشي يخلينا نتسائلوا: واش يتمتعوا بذكاء استثماري خارق ولا كاين حاجة ورانا ما نعرفوهاش؟ المقال يشرح كيفاش تأثير الكلمات يقدر يغير كل حاجة في عالم المال والأعمال، وحتى كيفاش يمكن أن واحد الخطاب يدفع الثروات للارتفاع.

    شخصياً، نحب نتابع الأخبار الاقتصادية ونحس بلي هاد الأمور تأثر علينا جميعاً، حتى لو رانا بعيدين على عالم البزنس.

    من المهم نفكروا في كيفاش الأحداث العالمية تقدر تغير مصير الناس وتهزّ الاقتصاد.

    https://forbesmiddleeast.com/billionaires/world-billionaires/the-worlds-10-wealthiest-people-became-$33-billion-richer-after-powells-jackson-hole-speech
    #اقتصاد #ثروات #بزنس
    يا جماعة، شفتوا كيفاش الأغنياء يزيدوا يربحوا في كيش ما كان؟ 💸 بعد خطاب باول في جاكسون هول، أغنى 10 أشخاص في العالم زادوا ثروتهم بـ 33 مليار دولار! 😲 سماهم لي! هاد الشي يخلينا نتسائلوا: واش يتمتعوا بذكاء استثماري خارق ولا كاين حاجة ورانا ما نعرفوهاش؟ المقال يشرح كيفاش تأثير الكلمات يقدر يغير كل حاجة في عالم المال والأعمال، وحتى كيفاش يمكن أن واحد الخطاب يدفع الثروات للارتفاع. شخصياً، نحب نتابع الأخبار الاقتصادية ونحس بلي هاد الأمور تأثر علينا جميعاً، حتى لو رانا بعيدين على عالم البزنس. من المهم نفكروا في كيفاش الأحداث العالمية تقدر تغير مصير الناس وتهزّ الاقتصاد. https://forbesmiddleeast.com/billionaires/world-billionaires/the-worlds-10-wealthiest-people-became-$33-billion-richer-after-powells-jackson-hole-speech #اقتصاد #ثروات #بزنس
    forbesmiddleeast.com
    The World’s 10 Wealthiest People Became $33 Billion Richer After Powell’s Jackson Hole Speech
    Like
    Love
    Wow
    Sad
    Angry
    667
    · 1 التعليقات ·0 المشاركات
  • NVIDIA Jetson Thor Unlocks Real-Time Reasoning for General Robotics and Physical AI

    Robots around the world are about to get a lot smarter as physical AI developers plug in NVIDIA Jetson Thor modules — new robotics computers that can serve as the brains for robotic systems across research and industry.
    Robots demand rich sensor data and low-latency AI processing. Running real-time robotic applications requires significant AI compute and memory to handle concurrent data streams from multiple sensors. Jetson Thor, now in general availability, delivers 7.5x more AI compute, 3.1x more CPU performance and 2x more memory than its predecessor, the NVIDIA Jetson Orin, to make this possible on device.
    This performance leap will enable roboticists to process high-speed sensor data and perform visual reasoning at the edge — workflows that were previously too slow to run in dynamic real-world environments. This opens new possibilities for multimodal AI applications such as humanoid robotics.

    Agility Robotics, a leader in humanoid robotics, has integrated NVIDIA Jetson into the fifth generation of its robot, Digit — and plans to adopt Jetson Thor as the onboard compute platform for the sixth generation of Digit. This transition will enhance Digit’s real-time perception and decision-making capabilities, supporting increasingly complex AI skills and behaviors. Digit is commercially deployed and performs logistics tasks such as stacking, loading and palletizing in warehouse and manufacturing environments.
    “The powerful edge processing offered by Jetson Thor will take Digit to the next level — enhancing its real-time responsiveness and expanding its abilities to a broader, more complex set of skills,” said Peggy Johnson, CEO of Agility Robotics. “With Jetson Thor, we can deliver the latest physical AI advancements to optimize operations across our customers’ warehouses and factories.”
    Boston Dynamics — which has been building some of the industry’s most advanced robots for over 30 years — is integrating Jetson Thor into its humanoid robot Atlas, enabling Atlas to harness formerly server-level compute, AI workload acceleration, high-bandwidth data processing and significant memory on device.
    Beyond humanoids, Jetson Thor will accelerate various robotic applications — such as surgical assistants, smart tractors, delivery robots, industrial manipulators and visual AI agents — with real-time inference on device for larger, more complex AI models.
    A Giant Leap for Real-Time Robot Reasoning
    Jetson Thor is built for generative reasoning models. It enables the next generation of physical AI agents — powered by large transformer models, vision language models and vision language action models — to run in real time at the edge while minimizing cloud dependency.
    Optimized with the Jetson software stack to enable the low latency and high performance required in real-world applications, Jetson Thor supports all popular generative AI frameworks and AI reasoning models with unmatched real-time performance. These include Cosmos Reason, DeepSeek, Llama, Gemini and Qwen models, as well as domain-specific models for robotics like Isaac GR00T N1.5, enabling any developer to easily experiment and run inference locally.
    NVIDIA Jetson Thor opens new capabilities for real-time reasoning with multi-sensor input. Further performance improvement is expected with FP4 and speculative decoding optimization.
    With NVIDIA CUDA ecosystem support through its lifecycle, Jetson Thor is expected to deliver even better throughput and faster responses with future software releases.
    Jetson Thor modules also run the full NVIDIA AI software stack to accelerate virtually every physical AI workflow with platforms including NVIDIA Isaac for robotics, NVIDIA Metropolis for video analytics AI agents and NVIDIA Holoscan for sensor processing.
    With these software tools, developers can easily build and deploy applications, such as visual AI agents that can analyze live camera streams to monitor worker safety, humanoid robots capable of manipulation tasks in unstructured environments and smart operating rooms that guide surgeons based on data from multi-camera streams.
    Jetson Thor Set to Advance Research Innovation 
    Research labs at Stanford University, Carnegie Mellon University and the University of Zurich are tapping Jetson Thor to push the boundaries of perception, planning and navigation models for a host of potential applications.
    At Carnegie Mellon’s Robotics Institute, a research team uses NVIDIA Jetson to power autonomous robots that can navigate complex, unstructured environments to conduct medical triage as well as search and rescue.
    “We can only do as much as the compute available allows,” said Sebastian Scherer, an associate research professor at the university and head of the AirLab. “Years ago, there was a big disconnect between computer vision and robotics because computer vision workloads were too slow for real-time decision-making — but now, models and computing have gotten fast enough so robots can handle much more nuanced tasks.”
    Scherer anticipates that by upgrading from his team’s existing NVIDIA Jetson AGX Orin systems to Jetson AGX Thor developer kit, they’ll improve the performance of AI models including their award-winning MAC-VO model for robot perception at the edge, boost their sensor-fusion capabilities and be able to experiment with robot fleets.
    Wield the Strength of Jetson Thor
    The Jetson Thor family includes a developer kit and production modules. The developer kit includes a Jetson T5000 module, a reference carrier board with abundant connectivity, an active heatsink with a fan and a power supply.
    NVIDIA Jetson AGX Thor Developer Kit
    The Jetson ecosystem supports a variety of application requirements, high-speed industrial automation protocols and sensor interfaces, accelerating time to market for enterprise developers. Hardware partners including Advantech, Aetina, ConnectTech, MiiVii and TZTEK are building production-ready Jetson Thor systems with flexible I/O and custom configurations in various form factors.
    Sensor and Actuator companies including Analog Devices, Inc., e-con Systems,  Infineon, Leopard Imaging, RealSense and Sensing are using NVIDIA Holoscan Sensor Bridge — a platform that simplifies sensor fusion and data streaming — to connect sensor data from cameras, radar, lidar and more directly to GPU memory on Jetson Thor with ultralow latency.
    Thousands of software companies can now elevate their traditional vision AI and robotics applications with multi-AI agent workflows running on Jetson Thor. Leading adopters include Openzeka, Rebotnix, Solomon and Vaidio.
    More than 2 million developers use NVIDIA technologies to accelerate robotics workflows. Get started with Jetson Thor by reading the NVIDIA Technical Blog and watching the developer kit walkthrough.

    To get hands-on experience with Jetson Thor, sign up to participate in upcoming hackathons with Seeed Studio and LeRobot by Hugging Face.
    The NVIDIA Jetson AGX Thor developer kit is available now starting at NVIDIA Jetson T5000 modules are available starting at for 1,000 units. Buy now from authorized NVIDIA partners.
    NVIDIA today also announced that the NVIDIA DRIVE AGX Thor developer kit, which provides a platform for developing autonomous vehicles and mobility solutions, is available for preorder. Deliveries are slated to start in September.
    #nvidia #jetson #thor #unlocks #realtime
    NVIDIA Jetson Thor Unlocks Real-Time Reasoning for General Robotics and Physical AI
    Robots around the world are about to get a lot smarter as physical AI developers plug in NVIDIA Jetson Thor modules — new robotics computers that can serve as the brains for robotic systems across research and industry. Robots demand rich sensor data and low-latency AI processing. Running real-time robotic applications requires significant AI compute and memory to handle concurrent data streams from multiple sensors. Jetson Thor, now in general availability, delivers 7.5x more AI compute, 3.1x more CPU performance and 2x more memory than its predecessor, the NVIDIA Jetson Orin, to make this possible on device. This performance leap will enable roboticists to process high-speed sensor data and perform visual reasoning at the edge — workflows that were previously too slow to run in dynamic real-world environments. This opens new possibilities for multimodal AI applications such as humanoid robotics. Agility Robotics, a leader in humanoid robotics, has integrated NVIDIA Jetson into the fifth generation of its robot, Digit — and plans to adopt Jetson Thor as the onboard compute platform for the sixth generation of Digit. This transition will enhance Digit’s real-time perception and decision-making capabilities, supporting increasingly complex AI skills and behaviors. Digit is commercially deployed and performs logistics tasks such as stacking, loading and palletizing in warehouse and manufacturing environments. “The powerful edge processing offered by Jetson Thor will take Digit to the next level — enhancing its real-time responsiveness and expanding its abilities to a broader, more complex set of skills,” said Peggy Johnson, CEO of Agility Robotics. “With Jetson Thor, we can deliver the latest physical AI advancements to optimize operations across our customers’ warehouses and factories.” Boston Dynamics — which has been building some of the industry’s most advanced robots for over 30 years — is integrating Jetson Thor into its humanoid robot Atlas, enabling Atlas to harness formerly server-level compute, AI workload acceleration, high-bandwidth data processing and significant memory on device. Beyond humanoids, Jetson Thor will accelerate various robotic applications — such as surgical assistants, smart tractors, delivery robots, industrial manipulators and visual AI agents — with real-time inference on device for larger, more complex AI models. A Giant Leap for Real-Time Robot Reasoning Jetson Thor is built for generative reasoning models. It enables the next generation of physical AI agents — powered by large transformer models, vision language models and vision language action models — to run in real time at the edge while minimizing cloud dependency. Optimized with the Jetson software stack to enable the low latency and high performance required in real-world applications, Jetson Thor supports all popular generative AI frameworks and AI reasoning models with unmatched real-time performance. These include Cosmos Reason, DeepSeek, Llama, Gemini and Qwen models, as well as domain-specific models for robotics like Isaac GR00T N1.5, enabling any developer to easily experiment and run inference locally. NVIDIA Jetson Thor opens new capabilities for real-time reasoning with multi-sensor input. Further performance improvement is expected with FP4 and speculative decoding optimization. With NVIDIA CUDA ecosystem support through its lifecycle, Jetson Thor is expected to deliver even better throughput and faster responses with future software releases. Jetson Thor modules also run the full NVIDIA AI software stack to accelerate virtually every physical AI workflow with platforms including NVIDIA Isaac for robotics, NVIDIA Metropolis for video analytics AI agents and NVIDIA Holoscan for sensor processing. With these software tools, developers can easily build and deploy applications, such as visual AI agents that can analyze live camera streams to monitor worker safety, humanoid robots capable of manipulation tasks in unstructured environments and smart operating rooms that guide surgeons based on data from multi-camera streams. Jetson Thor Set to Advance Research Innovation  Research labs at Stanford University, Carnegie Mellon University and the University of Zurich are tapping Jetson Thor to push the boundaries of perception, planning and navigation models for a host of potential applications. At Carnegie Mellon’s Robotics Institute, a research team uses NVIDIA Jetson to power autonomous robots that can navigate complex, unstructured environments to conduct medical triage as well as search and rescue. “We can only do as much as the compute available allows,” said Sebastian Scherer, an associate research professor at the university and head of the AirLab. “Years ago, there was a big disconnect between computer vision and robotics because computer vision workloads were too slow for real-time decision-making — but now, models and computing have gotten fast enough so robots can handle much more nuanced tasks.” Scherer anticipates that by upgrading from his team’s existing NVIDIA Jetson AGX Orin systems to Jetson AGX Thor developer kit, they’ll improve the performance of AI models including their award-winning MAC-VO model for robot perception at the edge, boost their sensor-fusion capabilities and be able to experiment with robot fleets. Wield the Strength of Jetson Thor The Jetson Thor family includes a developer kit and production modules. The developer kit includes a Jetson T5000 module, a reference carrier board with abundant connectivity, an active heatsink with a fan and a power supply. NVIDIA Jetson AGX Thor Developer Kit The Jetson ecosystem supports a variety of application requirements, high-speed industrial automation protocols and sensor interfaces, accelerating time to market for enterprise developers. Hardware partners including Advantech, Aetina, ConnectTech, MiiVii and TZTEK are building production-ready Jetson Thor systems with flexible I/O and custom configurations in various form factors. Sensor and Actuator companies including Analog Devices, Inc., e-con Systems,  Infineon, Leopard Imaging, RealSense and Sensing are using NVIDIA Holoscan Sensor Bridge — a platform that simplifies sensor fusion and data streaming — to connect sensor data from cameras, radar, lidar and more directly to GPU memory on Jetson Thor with ultralow latency. Thousands of software companies can now elevate their traditional vision AI and robotics applications with multi-AI agent workflows running on Jetson Thor. Leading adopters include Openzeka, Rebotnix, Solomon and Vaidio. More than 2 million developers use NVIDIA technologies to accelerate robotics workflows. Get started with Jetson Thor by reading the NVIDIA Technical Blog and watching the developer kit walkthrough. To get hands-on experience with Jetson Thor, sign up to participate in upcoming hackathons with Seeed Studio and LeRobot by Hugging Face. The NVIDIA Jetson AGX Thor developer kit is available now starting at NVIDIA Jetson T5000 modules are available starting at for 1,000 units. Buy now from authorized NVIDIA partners. NVIDIA today also announced that the NVIDIA DRIVE AGX Thor developer kit, which provides a platform for developing autonomous vehicles and mobility solutions, is available for preorder. Deliveries are slated to start in September. #nvidia #jetson #thor #unlocks #realtime
    NVIDIA Jetson Thor Unlocks Real-Time Reasoning for General Robotics and Physical AI
    blogs.nvidia.com
    Robots around the world are about to get a lot smarter as physical AI developers plug in NVIDIA Jetson Thor modules — new robotics computers that can serve as the brains for robotic systems across research and industry. Robots demand rich sensor data and low-latency AI processing. Running real-time robotic applications requires significant AI compute and memory to handle concurrent data streams from multiple sensors. Jetson Thor, now in general availability, delivers 7.5x more AI compute, 3.1x more CPU performance and 2x more memory than its predecessor, the NVIDIA Jetson Orin, to make this possible on device. This performance leap will enable roboticists to process high-speed sensor data and perform visual reasoning at the edge — workflows that were previously too slow to run in dynamic real-world environments. This opens new possibilities for multimodal AI applications such as humanoid robotics. Agility Robotics, a leader in humanoid robotics, has integrated NVIDIA Jetson into the fifth generation of its robot, Digit — and plans to adopt Jetson Thor as the onboard compute platform for the sixth generation of Digit. This transition will enhance Digit’s real-time perception and decision-making capabilities, supporting increasingly complex AI skills and behaviors. Digit is commercially deployed and performs logistics tasks such as stacking, loading and palletizing in warehouse and manufacturing environments. “The powerful edge processing offered by Jetson Thor will take Digit to the next level — enhancing its real-time responsiveness and expanding its abilities to a broader, more complex set of skills,” said Peggy Johnson, CEO of Agility Robotics. “With Jetson Thor, we can deliver the latest physical AI advancements to optimize operations across our customers’ warehouses and factories.” Boston Dynamics — which has been building some of the industry’s most advanced robots for over 30 years — is integrating Jetson Thor into its humanoid robot Atlas, enabling Atlas to harness formerly server-level compute, AI workload acceleration, high-bandwidth data processing and significant memory on device. Beyond humanoids, Jetson Thor will accelerate various robotic applications — such as surgical assistants, smart tractors, delivery robots, industrial manipulators and visual AI agents — with real-time inference on device for larger, more complex AI models. A Giant Leap for Real-Time Robot Reasoning Jetson Thor is built for generative reasoning models. It enables the next generation of physical AI agents — powered by large transformer models, vision language models and vision language action models — to run in real time at the edge while minimizing cloud dependency. Optimized with the Jetson software stack to enable the low latency and high performance required in real-world applications, Jetson Thor supports all popular generative AI frameworks and AI reasoning models with unmatched real-time performance. These include Cosmos Reason, DeepSeek, Llama, Gemini and Qwen models, as well as domain-specific models for robotics like Isaac GR00T N1.5, enabling any developer to easily experiment and run inference locally. NVIDIA Jetson Thor opens new capabilities for real-time reasoning with multi-sensor input. Further performance improvement is expected with FP4 and speculative decoding optimization. With NVIDIA CUDA ecosystem support through its lifecycle, Jetson Thor is expected to deliver even better throughput and faster responses with future software releases. Jetson Thor modules also run the full NVIDIA AI software stack to accelerate virtually every physical AI workflow with platforms including NVIDIA Isaac for robotics, NVIDIA Metropolis for video analytics AI agents and NVIDIA Holoscan for sensor processing. With these software tools, developers can easily build and deploy applications, such as visual AI agents that can analyze live camera streams to monitor worker safety, humanoid robots capable of manipulation tasks in unstructured environments and smart operating rooms that guide surgeons based on data from multi-camera streams. Jetson Thor Set to Advance Research Innovation  Research labs at Stanford University, Carnegie Mellon University and the University of Zurich are tapping Jetson Thor to push the boundaries of perception, planning and navigation models for a host of potential applications. At Carnegie Mellon’s Robotics Institute, a research team uses NVIDIA Jetson to power autonomous robots that can navigate complex, unstructured environments to conduct medical triage as well as search and rescue. “We can only do as much as the compute available allows,” said Sebastian Scherer, an associate research professor at the university and head of the AirLab. “Years ago, there was a big disconnect between computer vision and robotics because computer vision workloads were too slow for real-time decision-making — but now, models and computing have gotten fast enough so robots can handle much more nuanced tasks.” Scherer anticipates that by upgrading from his team’s existing NVIDIA Jetson AGX Orin systems to Jetson AGX Thor developer kit, they’ll improve the performance of AI models including their award-winning MAC-VO model for robot perception at the edge, boost their sensor-fusion capabilities and be able to experiment with robot fleets. Wield the Strength of Jetson Thor The Jetson Thor family includes a developer kit and production modules. The developer kit includes a Jetson T5000 module, a reference carrier board with abundant connectivity, an active heatsink with a fan and a power supply. NVIDIA Jetson AGX Thor Developer Kit The Jetson ecosystem supports a variety of application requirements, high-speed industrial automation protocols and sensor interfaces, accelerating time to market for enterprise developers. Hardware partners including Advantech, Aetina, ConnectTech, MiiVii and TZTEK are building production-ready Jetson Thor systems with flexible I/O and custom configurations in various form factors. Sensor and Actuator companies including Analog Devices, Inc. (ADI), e-con Systems,  Infineon, Leopard Imaging, RealSense and Sensing are using NVIDIA Holoscan Sensor Bridge — a platform that simplifies sensor fusion and data streaming — to connect sensor data from cameras, radar, lidar and more directly to GPU memory on Jetson Thor with ultralow latency. Thousands of software companies can now elevate their traditional vision AI and robotics applications with multi-AI agent workflows running on Jetson Thor. Leading adopters include Openzeka, Rebotnix, Solomon and Vaidio. More than 2 million developers use NVIDIA technologies to accelerate robotics workflows. Get started with Jetson Thor by reading the NVIDIA Technical Blog and watching the developer kit walkthrough. To get hands-on experience with Jetson Thor, sign up to participate in upcoming hackathons with Seeed Studio and LeRobot by Hugging Face. The NVIDIA Jetson AGX Thor developer kit is available now starting at $3,499. NVIDIA Jetson T5000 modules are available starting at $2,999 for 1,000 units. Buy now from authorized NVIDIA partners. NVIDIA today also announced that the NVIDIA DRIVE AGX Thor developer kit, which provides a platform for developing autonomous vehicles and mobility solutions, is available for preorder. Deliveries are slated to start in September.
    Like
    Love
    Wow
    Sad
    Angry
    797
    · 2 التعليقات ·0 المشاركات
  • Fur Grooming Techniques For Realistic Stitch In Blender

    IntroductionHi everyone! My name is Oleh Yakushev, and I'm a 3D Artist from Ukraine. My journey into 3D began just three years ago, when I was working as a mobile phone salesperson at a shopping mall. In 2022, during one slow day at work, I noticed a colleague learning Python. We started talking about life goals. I told him I wanted to switch careers, to do something creative, but programming wasn't really my thing.He asked me a simple question: "Well, what do you actually enjoy doing?"I said, "Video games. I love video games. But I don't have time to learn how to make them, I've got a job, a family, and a kid."Then he hit me with something that really shifted my whole perspective."Oleh, do you play games on your PlayStation?"I said, "Of course."He replied, "Then why not take the time you spend playing and use it to learn how to make games?"That moment flipped a switch in my mind. I realized that I did have time, it was just a matter of how I used it. If I really wanted to learn, I could find a way. At the time, I didn't even own a computer. But where there's a will, there's a way: I borrowed my sister's laptop for a month and started following beginner 3D tutorials on YouTube. Every night after work, once my family went to sleep, I'd sit in the kitchen and study. I stayed up until 2 or 3 AM, learning Blender basics. Then I'd sleep for a few hours before waking up at 6 AM to go back to work. That's how I spent my first few months in 3D, studying every single night.3D completely took over my life. During lunch breaks, I watched 3D videos, on the bus, I scrolled through 3D TikToks, at home, I took 3D courses, and the word "3D" just became a constant in my vocabulary.After a few months of learning the basics, I started building my portfolio, which looks pretty funny to me now. But at the time, it was a real sign of how committed I was. Eventually, someone reached out to me through Behance, offering my first freelance opportunity. And thatэs how my journey began, from mall clerk to 3D artist. It's been a tough road, full of burnout, doubts, and late nights... but also full of curiosity, growth, and hope. And I wouldn't trade it for anything.The Stitch ProjectI've loved Stitch since I was a kid. I used to watch the cartoons, play the video games, and he always felt like such a warm, funny, chill, and at the same time, strong character. So once I reached a certain level in 3D, I decided to recreate Stitch.Back then, my skills only allowed me to make him in a stylized cartoonish style, no fur, no complex detailing, no advanced texturing, I just didn't have the experience. Surprisingly, the result turned out pretty decent. Even now, I sometimes get comments that my old Stitch still looks quite cute. Though honestly, I wouldn't say that myself anymore. Two years have passed since I made that first Stitch, it was back in 2023. And in 2025, I decided it was time to challenge myself.At that point, I had just completed an intense grooming course. Grooming always intimidated me, it felt really complex. I avoided it on commercial projects, made a few failed attempts for my portfolio, and overall tried to steer clear of any tasks where grooming was required. But eventually, I found the strength to face it.I pushed myself to learn how to make great fur, and I did. I finally understood how the grooming system works, grasped the logic, the tools, and the workflow. And after finishing the course, I wanted to lock in all that knowledge by creating a full personal project from scratch.So my goal was to make a character from the ground up, where the final stage would be grooming. And without thinking too long, I chose Stitch.First, because I truly love the character. Second, I wanted to clearly see my own progress over the past two years. Third, I needed to put my new skills to the test and find out whether my training had really paid off.ModelingI had a few ideas for how to approach the base mesh for this project. First, to model everything completely from scratch, starting with a sphere. Second, to reuse my old Stitch model and upgrade it.But then an idea struck me: why not test how well AI could handle a base mesh? I gathered some references and tried generating a base mesh using AI, uploading Stitch visuals as a guide. As you can see from the screenshot, the result was far from usable. So I basically ended up doing everything from scratch anyway.So, I went back to basics: digging through ArtStation and Pinterest, collecting references. Since over the last two years, I had not only learned grooming but also completely changed my overall approach to character creation, it was important for me to make a more detailed model, even if much of it would be hidden under fur.The first Stitch was sculpted in Blender, with all the limitations that come with sculpting in it. But since then, I've leveled up significantly and switched to more advanced tools. So this second version of Stitch was born in ZBrush. By the time I started working on this Stitch, ZBrush had already become my second main workspace. I've used it to deliver tons of commercial projects, I work in it almost daily, and most of my portfolio was created using this tool. I found some great reference images showing Stitch's body structure. Among them were official movie references and a stunning high-poly model created by Juan Hernández, a version of Stitch without fur. That model became my primary reference for sculpting.Truth is, Stitch's base form is quite simple, so blocking out the shape didn't take too long. When blocking, I use Blender in combination with ZBrush:I work with primary forms in ZBrushThen check proportions in BlenderFix mistakes, tweak volumes, and refine the silhouetteSince Stitch's shape isn't overly complex, I broke him down into three main sculpting parts:The body: arms, legs, head, and earsThe nose, eyes, and mouth cavityWhile planning the sculpt, I already knew I'd be rigging Stitch, both body and facial rig. So I started sculpting with his mouth open.While studying various references, I noticed something interesting. Stitch from promotional posters, Stitch from the movie, and Stitch as recreated by different artists on ArtStation all look very different from one another. What surprised me the most was how different the promo version of Stitch is compared to the one in the actual movie. They are essentially two separate models:Different proportionsDifferent shapesDifferent texturesEven different fur and overall designThis presented a creative challenge, I had to develop my own take on Stitch's design. Sometimes I liked the way the teeth were done in one version, in another, the eye placement, in another, the fur shape, or the claw design on hands and feet.At first, considering that Stitch is completely covered in fur from head to toe, sculpting his underlying anatomy seemed pointless. I kept asking myself: "Why sculpt muscles and skin detail if everything will be hidden under fur anyway?"But eventually, I found a few solid answers for myself. First, having a defined muscle structure actually makes the fur grooming process easier. That's because fur often follows the flow of muscle lines, so having those muscles helps guide fur direction more accurately across the character's body.Second, it's great anatomy practice, and practice is never a waste. So, I found a solid anatomical reference of Stitch with clearly visible muscle groups and tried to recreate that structure as closely as possible in my own sculpt.In the end, I had to develop a full visual concept by combining elements from multiple versions of Stitch. Through careful reference work and constantly switching between Blender and ZBrush, I gradually, but intentionally, built up the body and overall look of our favorite fluffy alien.Topology & UVsThroughout the sculpting process, I spent quite a bit of time thinking about topology. I was looking for the most balanced solution between quality and production time. Normally, I do manual retopology for my characters, but this time, I knew it would take too much time, and honestly, I didn't have that luxury.So I decided to generate the topology using ZBrush's tools. I split the model into separate parts using Polygroups, assigning individual groups for the ears, the head, the torso, the arms, the legs, and each of Stitch's fingers.With the Polygroups in place, I used ZRemesher with Keep Groups enabled and smoothing on group borders. This gave me a clean and optimized mesh that was perfect for UV unwrapping.Of course, this kind of auto-retopology isn't a full substitute for manual work, but it saved me a huge amount of time, and the quality was still high enough for what I needed. However, there was one tricky issue. Although Stitch looks symmetrical at first glance, his ears are actually asymmetrical. The right ear has a scar on the top, while the left has a scar on the bottomBecause of that, I couldn't just mirror one side in ZBrush without losing those unique features. Here's what I ended up doing: I created a symmetrical model with the right ear, then another symmetrical model with the left ear. I brought both into Blender, detached the left ear from one model, and attached it to the body of the other one. This way, I got a clean, symmetrical base mesh with asymmetrical ears, preserving both topology and detail. And thanks to the clean polygroup-based layout, I was able to unwrap the UVs with nice, even seams and clean islands.When it came to UV mapping, I divided Stitch into two UDIM tiles:The first UDIM includes the head with ears, torso, arms, and legs.The second UDIM contains all the additional parts: teeth, tongue, gums, claws, and noseSince the nose is one of the most important details, I allocated the largest space to it, which helped me to better capture its intricate details.As for the eyes, I used procedural eyes, so there was no need to assign UV space or create a separate UDIM for texturing them. To achieve this, I used the Tiny Eye add-on by tinynocky for Blender, which allows full control over procedural eyes and their parameters.This approach gave me high-quality eyes with customizable elements tailored exactly to my needs. As a result of all these steps, Stitch ended up with a symmetrical, optimized mesh, asymmetrical ears, and the body split across two UDIMs, one for the main body and one for the additional parts.TexturingWhen planning Stitch's texturing, I understood that the main body texture would be fairly simple, with much of the visual detail enhanced by the fur. However, there were some areas that required much more attention than the rest of the body. The textures for Stitch can be roughly divided into several main parts:The base body, which includes the primary color of his fur, along with additional shading like a lighter tone on the frontand a darker tone on the back and napeThe nose and ears, these zones, demanded separate focusAt the initial texturing/blocking stage, the ears looked too cartoony, which didn’t fit the style I wanted. So, I decided to push them towards a more realistic look. This involved removing bright colors, adding more variation in the roughness map, introducing variation in the base color, and making the ears visually more natural, layered, and textured on the surface. By combining smart materials and masks, I achieved the effect of "living" ears, slightly dirty and looking as natural as possible.The nose was a separate story. It occupies a significant part of the face and thus draws a lot of attention. While studying references, I noticed that the shape and texture of the nose vary a lot between different artists. Initially, I made it dog-like, with some wear and tear around the nostrils and base.For a long time, I thought this version was acceptable. But during test renders, I realized the nose needed improvement. So I reworked its texturing, aiming to make it more detailed. I divided the nose texture into four main layers:Base detail: Baked from the high-poly model. Over this, I applied a smart skin material that added characteristic bumps.Lighter layer: Applied via a mask using the AO channel. This darkened the crevices and brightened the bumps, creating a multi-layered effect.Organic detail: In animal references, I noticed slight redness in the nose area. I created another AO-masked layer with reddish capillaries visible through the bumps, adding depth and realism.Softness: To make the nose visually softer, like in references, I added a fill layer with only height enabled, used a paper texture as grayscale, and applied a blurred mask. This created subtle dents and wrinkles that softened the look.All textures were created in 4K resolution to achieve maximum detail. After finishing the main texturing stage, I add an Ambient Occlusion map on the final texture layer, activating only the Color channel, setting the blend mode to Multiply, and reducing opacity to about 35%. This adds volume and greatly improves the overall perception of the model.That covers the texturing of Stitch’s body. I also created a separate texture for the fur. This was simpler, I disabled unnecessary layers like ears and eyelids, and left only the base ones corresponding to the body’s color tones.During grooming, I also created textures for the fur's clamps and roughness. In Substance 3D Painter, I additionally painted masks for better fur detail.FurAnd finally, I moved on to the part that was most important to me, the very reason I started this project in the first place. Fur. This entire process was essentially a test of my fur grooming skills. After overcoming self-doubt, I trusted the process and relied on everything I had learned so far. Before diving into the grooming itself, I made sure to gather strong references. I searched for the highest quality and most inspiring examples I could find and analyzed them thoroughly. My goal was to clearly understand the direction of fur growth, its density and volume, the intensity of roughness, and the strength of clumping in different areas of Stitch's body.To create the fur, I used Blender and its Hair Particle System. The overall approach is similar to sculpting a high-detail model: work from broad strokes to finer details. So, the first step was blocking out the main flow and placement of the hair strands.At this point, I ran into a challenge: symmetry. Since the model was purposefully asymmetrical, the fur couldn't be mirrored cleanly. To solve this, I created a base fur blocking using Hair Guides with just two segments. After that, I split the fur into separate parts. I duplicated the main Particle System and created individual hair systems for each area where needed.In total, I broke Stitch's body into key sections: head, left ear, right ear, front torso, back torso, arms, hands, upper and lower legs, toes, and additional detailing layers. The final fur setup included 25 separate particle systems.To control fur growth, I used Weight Paint to fine-tune the influence on each body part individually. This separation gave me much more precision and allowed full control over every parameter of the fur on a per-section basis.The most challenging aspect of working with fur is staying patient and focused. Detail is absolutely critical because the overall picture is built entirely from tiny, subtle elements. Once the base layer was complete, I moved on to refining the fur based on my references.The most complex areas turned out to be the front of the torso and the face. When working on the torso, my goal was to create a smooth gradient, from thick, clumped fur on the chest to shorter, softer fur on the stomach.Step by step, I adjusted the transitions, directions, clumps, and volumes to achieve that look. Additionally, I used the fur itself to subtly enhance Stitch's silhouette, making his overall shape feel sharper, more expressive, and visually engaging.During fur development, I used texture maps to control the intensity of the Roughness and Clump parameters. This gave me a high degree of flexibility, textures drove these attributes across the entire model. In areas where stronger clumping or roughness was needed, I used brighter values; in zones requiring a softer look, darker values. This approach allowed for fine-tuned micro-level control of the fur shader and helped achieve a highly realistic appearance in renders.The face required special attention: the fur had to be neat, evenly distributed, and still visually appealing. The biggest challenge here was working around the eye area. Even with properly adjusted Weight Paint, interpolation sometimes caused strands to creep into the eyes.I spent a lot of time cleaning up this region to get an optimal result. I also had to revisit certain patches that looked bald, even though interpolation and weight painting were set correctly, because the fur didn't render properly there. These areas needed manual fixing.As part of the detailing stage, I also increased the number of segments in the Hair Guides.While the blocking phase only used two segments, I went up to three, and in some cases even five, for more complex regions. This gave me much more control over fur shape and flow.The tiniest details really matter, so I added extra fur layers with thinner, more chaotic strands extending slightly beyond the main silhouette. These micro-layers significantly improved the texture depth and boosted the overall realism.Aside from the grooming itself, I paid special attention to the fur material setup, as the shader plays a critical role in the final visual quality of the render. It's not enough to simply plug a color texture into a Principled BSDF node and call it done.I built a more complex shader, giving me precise control over various attributes. For example, I implemented subtle color variation across individual strands, along with darkening near the roots and a gradual brightening toward the tips. This helped add visual depth and made the fur look significantly more natural and lifelike.Working on the fur took up nearly half of the total time I spent on the entire model. And I'm genuinely happy with the result, this stage confirmed that the training I've gone through was solid and that I’m heading in the right direction with my artistic development.Rigging, Posing & SceneOnce I finished working on the fur, I rendered several 4K test shots from different angles to make sure every detail looked the way I intended. When I was fully satisfied with the results, it was time to move on to rigging.I divided the rigging process into three main parts:Body rig, for posing and positioning the characterFacial rig, for expressions and emotionsEar rig, for dynamic ear controlRigging isn't something I consider my strongest skill, but as a 3D generalist, I had to dive into many technical aspects of it. For the ears, I set up a relatively simple system with several bones connected using inverse kinematics. This gave me flexible and intuitive control during posing and allowed for the addition of dynamic movement in animation.For facial rigging, I used the FaceIt add-on, which generates a complete facial control system for mouth, eyes, and tongue. It sped up the process significantly and gave me more precision. For the body, I used the ActorCore Rig by NVIDIA, then converted it to Rigify, which gave me a familiar interface and flexible control over poses.Posing is one of my favorite stages, it's when the character really comes to life. As usual, it started with gathering references. Honestly, it was hard to pick the final poses, Stitch is so expressive and full of personality that I wanted to try hundreds of them. But I focused on those that best conveyed the spirit and mood of the character. Some poses I reworked to fit my style rather than copying directly. For example, in the pose where Stitch licks his nose, I added drool and a bit of "green slime" for comedic effect. To capture motion, I tilted his head back and made the ears fly upward, creating a vivid, emotional snapshot.Just like in sculpting or grooming, minor details make a big difference in posing. Examples include: a slight asymmetry in the facial expression, a raised corner of the mouth, one eye squinting a little more than the other, and ears set at slightly different angles.These are subtle things that might not be noticed immediately, but they’re the key to making the character feel alive and believable.For each pose, I created a separate scene and collection in Blender, including the character, specific lighting setup, and a simple background or environment. This made it easy to return to any scene later, to adjust lighting, reposition the character, or tweak the background.In one of the renders, which I used as the cover image, Stitch is holding a little frog.I want to clearly note that the 3D model of the frog is not mine, full credit goes to the original author of the asset.At first, I wanted to build a full environment around Stitch, to create a scene that would feel like a frame from a film. But after carefully evaluating my skills and priorities, I decided that a weak environment would only detract from the strength of the character. So I opted for a simple, neutral backdrop, designed to keep all the focus on Stitch himself.Rendering, Lighting & Post-ProcessingWhen the character is complete, posed expressively, and integrated into the scene, there's one final step: lighting. Lighting isn't just a technical element of the scene — it’s a full-fledged stage of the 3D pipeline. It doesn't just illuminate; it paints. Proper lighting can highlight the personality of the character, emphasize forms, and create atmosphere.For all my renders, I rely on the classic three-point lighting setup: Key Light, Fill Light, and Rim Light.While this setup is well-known, it remains highly effective. When done thoughtfully, with the right intensity, direction, and color temperature, it creates a strong light-shadow composition that brings the model to life. In addition to the three main lights, I also use an HDRI map, but with very low intensity, around 0.3, just enough to subtly enrich the ambient light without overpowering the scene.Once everything is set, it's time to hit Render and wait for the result. Due to hardware limitations, I wasn’t able to produce full animated shots with fur. Rendering a single 4K image with fur took over an hour, so I limited myself to a 360° turnaround and several static renders.I don't spend too much time on post-processing, just basic refinements in Photoshop. Slight enhancement of the composition, gentle shadow adjustments, color balance tweaks, and adding a logo. Everything is done subtly, nothing overprocessed. The goal is simply to support and enhance what’s already there.Final ThoughtsThis project has been an incredible experience. Although it was my second time creating Stitch, this time the process felt completely different at every stage. And honestly, it wasn't easy.But that was exactly the point: to challenge myself. To reimagine something familiar, to try things I'd never done before, and to walk the full journey from start to finish. The fur, the heart of this project, was especially meaningful to me. It’s what started it all. I poured a lot into this model: time, effort, emotion, and even doubts. But at the same time, I brought all my knowledge, skills, and experience into it.This work became a mirror of my progress from 2023 to 2025. I can clearly see how far I've come, and that gives me the motivation to keep going. Every hour of learning and practice paid off, the results speak for themselves. This model was created for my portfolio. I don't plan to use it commercially, unless, of course, a studio actually wants to license it for a new filmIt's been a long road: challenging, sometimes exhausting, but above all inspiring and exciting. I know there's still a lot to learn. Many things to study, improve, and polish to perfection. But I'm already on that path, and I'm not stopping.Oleh Yakushev, 3D Character ArtistInterview conducted by Gloria Levine
    #fur #grooming #techniques #realistic #stitch
    Fur Grooming Techniques For Realistic Stitch In Blender
    IntroductionHi everyone! My name is Oleh Yakushev, and I'm a 3D Artist from Ukraine. My journey into 3D began just three years ago, when I was working as a mobile phone salesperson at a shopping mall. In 2022, during one slow day at work, I noticed a colleague learning Python. We started talking about life goals. I told him I wanted to switch careers, to do something creative, but programming wasn't really my thing.He asked me a simple question: "Well, what do you actually enjoy doing?"I said, "Video games. I love video games. But I don't have time to learn how to make them, I've got a job, a family, and a kid."Then he hit me with something that really shifted my whole perspective."Oleh, do you play games on your PlayStation?"I said, "Of course."He replied, "Then why not take the time you spend playing and use it to learn how to make games?"That moment flipped a switch in my mind. I realized that I did have time, it was just a matter of how I used it. If I really wanted to learn, I could find a way. At the time, I didn't even own a computer. But where there's a will, there's a way: I borrowed my sister's laptop for a month and started following beginner 3D tutorials on YouTube. Every night after work, once my family went to sleep, I'd sit in the kitchen and study. I stayed up until 2 or 3 AM, learning Blender basics. Then I'd sleep for a few hours before waking up at 6 AM to go back to work. That's how I spent my first few months in 3D, studying every single night.3D completely took over my life. During lunch breaks, I watched 3D videos, on the bus, I scrolled through 3D TikToks, at home, I took 3D courses, and the word "3D" just became a constant in my vocabulary.After a few months of learning the basics, I started building my portfolio, which looks pretty funny to me now. But at the time, it was a real sign of how committed I was. Eventually, someone reached out to me through Behance, offering my first freelance opportunity. And thatэs how my journey began, from mall clerk to 3D artist. It's been a tough road, full of burnout, doubts, and late nights... but also full of curiosity, growth, and hope. And I wouldn't trade it for anything.The Stitch ProjectI've loved Stitch since I was a kid. I used to watch the cartoons, play the video games, and he always felt like such a warm, funny, chill, and at the same time, strong character. So once I reached a certain level in 3D, I decided to recreate Stitch.Back then, my skills only allowed me to make him in a stylized cartoonish style, no fur, no complex detailing, no advanced texturing, I just didn't have the experience. Surprisingly, the result turned out pretty decent. Even now, I sometimes get comments that my old Stitch still looks quite cute. Though honestly, I wouldn't say that myself anymore. Two years have passed since I made that first Stitch, it was back in 2023. And in 2025, I decided it was time to challenge myself.At that point, I had just completed an intense grooming course. Grooming always intimidated me, it felt really complex. I avoided it on commercial projects, made a few failed attempts for my portfolio, and overall tried to steer clear of any tasks where grooming was required. But eventually, I found the strength to face it.I pushed myself to learn how to make great fur, and I did. I finally understood how the grooming system works, grasped the logic, the tools, and the workflow. And after finishing the course, I wanted to lock in all that knowledge by creating a full personal project from scratch.So my goal was to make a character from the ground up, where the final stage would be grooming. And without thinking too long, I chose Stitch.First, because I truly love the character. Second, I wanted to clearly see my own progress over the past two years. Third, I needed to put my new skills to the test and find out whether my training had really paid off.ModelingI had a few ideas for how to approach the base mesh for this project. First, to model everything completely from scratch, starting with a sphere. Second, to reuse my old Stitch model and upgrade it.But then an idea struck me: why not test how well AI could handle a base mesh? I gathered some references and tried generating a base mesh using AI, uploading Stitch visuals as a guide. As you can see from the screenshot, the result was far from usable. So I basically ended up doing everything from scratch anyway.So, I went back to basics: digging through ArtStation and Pinterest, collecting references. Since over the last two years, I had not only learned grooming but also completely changed my overall approach to character creation, it was important for me to make a more detailed model, even if much of it would be hidden under fur.The first Stitch was sculpted in Blender, with all the limitations that come with sculpting in it. But since then, I've leveled up significantly and switched to more advanced tools. So this second version of Stitch was born in ZBrush. By the time I started working on this Stitch, ZBrush had already become my second main workspace. I've used it to deliver tons of commercial projects, I work in it almost daily, and most of my portfolio was created using this tool. I found some great reference images showing Stitch's body structure. Among them were official movie references and a stunning high-poly model created by Juan Hernández, a version of Stitch without fur. That model became my primary reference for sculpting.Truth is, Stitch's base form is quite simple, so blocking out the shape didn't take too long. When blocking, I use Blender in combination with ZBrush:I work with primary forms in ZBrushThen check proportions in BlenderFix mistakes, tweak volumes, and refine the silhouetteSince Stitch's shape isn't overly complex, I broke him down into three main sculpting parts:The body: arms, legs, head, and earsThe nose, eyes, and mouth cavityWhile planning the sculpt, I already knew I'd be rigging Stitch, both body and facial rig. So I started sculpting with his mouth open.While studying various references, I noticed something interesting. Stitch from promotional posters, Stitch from the movie, and Stitch as recreated by different artists on ArtStation all look very different from one another. What surprised me the most was how different the promo version of Stitch is compared to the one in the actual movie. They are essentially two separate models:Different proportionsDifferent shapesDifferent texturesEven different fur and overall designThis presented a creative challenge, I had to develop my own take on Stitch's design. Sometimes I liked the way the teeth were done in one version, in another, the eye placement, in another, the fur shape, or the claw design on hands and feet.At first, considering that Stitch is completely covered in fur from head to toe, sculpting his underlying anatomy seemed pointless. I kept asking myself: "Why sculpt muscles and skin detail if everything will be hidden under fur anyway?"But eventually, I found a few solid answers for myself. First, having a defined muscle structure actually makes the fur grooming process easier. That's because fur often follows the flow of muscle lines, so having those muscles helps guide fur direction more accurately across the character's body.Second, it's great anatomy practice, and practice is never a waste. So, I found a solid anatomical reference of Stitch with clearly visible muscle groups and tried to recreate that structure as closely as possible in my own sculpt.In the end, I had to develop a full visual concept by combining elements from multiple versions of Stitch. Through careful reference work and constantly switching between Blender and ZBrush, I gradually, but intentionally, built up the body and overall look of our favorite fluffy alien.Topology & UVsThroughout the sculpting process, I spent quite a bit of time thinking about topology. I was looking for the most balanced solution between quality and production time. Normally, I do manual retopology for my characters, but this time, I knew it would take too much time, and honestly, I didn't have that luxury.So I decided to generate the topology using ZBrush's tools. I split the model into separate parts using Polygroups, assigning individual groups for the ears, the head, the torso, the arms, the legs, and each of Stitch's fingers.With the Polygroups in place, I used ZRemesher with Keep Groups enabled and smoothing on group borders. This gave me a clean and optimized mesh that was perfect for UV unwrapping.Of course, this kind of auto-retopology isn't a full substitute for manual work, but it saved me a huge amount of time, and the quality was still high enough for what I needed. However, there was one tricky issue. Although Stitch looks symmetrical at first glance, his ears are actually asymmetrical. The right ear has a scar on the top, while the left has a scar on the bottomBecause of that, I couldn't just mirror one side in ZBrush without losing those unique features. Here's what I ended up doing: I created a symmetrical model with the right ear, then another symmetrical model with the left ear. I brought both into Blender, detached the left ear from one model, and attached it to the body of the other one. This way, I got a clean, symmetrical base mesh with asymmetrical ears, preserving both topology and detail. And thanks to the clean polygroup-based layout, I was able to unwrap the UVs with nice, even seams and clean islands.When it came to UV mapping, I divided Stitch into two UDIM tiles:The first UDIM includes the head with ears, torso, arms, and legs.The second UDIM contains all the additional parts: teeth, tongue, gums, claws, and noseSince the nose is one of the most important details, I allocated the largest space to it, which helped me to better capture its intricate details.As for the eyes, I used procedural eyes, so there was no need to assign UV space or create a separate UDIM for texturing them. To achieve this, I used the Tiny Eye add-on by tinynocky for Blender, which allows full control over procedural eyes and their parameters.This approach gave me high-quality eyes with customizable elements tailored exactly to my needs. As a result of all these steps, Stitch ended up with a symmetrical, optimized mesh, asymmetrical ears, and the body split across two UDIMs, one for the main body and one for the additional parts.TexturingWhen planning Stitch's texturing, I understood that the main body texture would be fairly simple, with much of the visual detail enhanced by the fur. However, there were some areas that required much more attention than the rest of the body. The textures for Stitch can be roughly divided into several main parts:The base body, which includes the primary color of his fur, along with additional shading like a lighter tone on the frontand a darker tone on the back and napeThe nose and ears, these zones, demanded separate focusAt the initial texturing/blocking stage, the ears looked too cartoony, which didn’t fit the style I wanted. So, I decided to push them towards a more realistic look. This involved removing bright colors, adding more variation in the roughness map, introducing variation in the base color, and making the ears visually more natural, layered, and textured on the surface. By combining smart materials and masks, I achieved the effect of "living" ears, slightly dirty and looking as natural as possible.The nose was a separate story. It occupies a significant part of the face and thus draws a lot of attention. While studying references, I noticed that the shape and texture of the nose vary a lot between different artists. Initially, I made it dog-like, with some wear and tear around the nostrils and base.For a long time, I thought this version was acceptable. But during test renders, I realized the nose needed improvement. So I reworked its texturing, aiming to make it more detailed. I divided the nose texture into four main layers:Base detail: Baked from the high-poly model. Over this, I applied a smart skin material that added characteristic bumps.Lighter layer: Applied via a mask using the AO channel. This darkened the crevices and brightened the bumps, creating a multi-layered effect.Organic detail: In animal references, I noticed slight redness in the nose area. I created another AO-masked layer with reddish capillaries visible through the bumps, adding depth and realism.Softness: To make the nose visually softer, like in references, I added a fill layer with only height enabled, used a paper texture as grayscale, and applied a blurred mask. This created subtle dents and wrinkles that softened the look.All textures were created in 4K resolution to achieve maximum detail. After finishing the main texturing stage, I add an Ambient Occlusion map on the final texture layer, activating only the Color channel, setting the blend mode to Multiply, and reducing opacity to about 35%. This adds volume and greatly improves the overall perception of the model.That covers the texturing of Stitch’s body. I also created a separate texture for the fur. This was simpler, I disabled unnecessary layers like ears and eyelids, and left only the base ones corresponding to the body’s color tones.During grooming, I also created textures for the fur's clamps and roughness. In Substance 3D Painter, I additionally painted masks for better fur detail.FurAnd finally, I moved on to the part that was most important to me, the very reason I started this project in the first place. Fur. This entire process was essentially a test of my fur grooming skills. After overcoming self-doubt, I trusted the process and relied on everything I had learned so far. Before diving into the grooming itself, I made sure to gather strong references. I searched for the highest quality and most inspiring examples I could find and analyzed them thoroughly. My goal was to clearly understand the direction of fur growth, its density and volume, the intensity of roughness, and the strength of clumping in different areas of Stitch's body.To create the fur, I used Blender and its Hair Particle System. The overall approach is similar to sculpting a high-detail model: work from broad strokes to finer details. So, the first step was blocking out the main flow and placement of the hair strands.At this point, I ran into a challenge: symmetry. Since the model was purposefully asymmetrical, the fur couldn't be mirrored cleanly. To solve this, I created a base fur blocking using Hair Guides with just two segments. After that, I split the fur into separate parts. I duplicated the main Particle System and created individual hair systems for each area where needed.In total, I broke Stitch's body into key sections: head, left ear, right ear, front torso, back torso, arms, hands, upper and lower legs, toes, and additional detailing layers. The final fur setup included 25 separate particle systems.To control fur growth, I used Weight Paint to fine-tune the influence on each body part individually. This separation gave me much more precision and allowed full control over every parameter of the fur on a per-section basis.The most challenging aspect of working with fur is staying patient and focused. Detail is absolutely critical because the overall picture is built entirely from tiny, subtle elements. Once the base layer was complete, I moved on to refining the fur based on my references.The most complex areas turned out to be the front of the torso and the face. When working on the torso, my goal was to create a smooth gradient, from thick, clumped fur on the chest to shorter, softer fur on the stomach.Step by step, I adjusted the transitions, directions, clumps, and volumes to achieve that look. Additionally, I used the fur itself to subtly enhance Stitch's silhouette, making his overall shape feel sharper, more expressive, and visually engaging.During fur development, I used texture maps to control the intensity of the Roughness and Clump parameters. This gave me a high degree of flexibility, textures drove these attributes across the entire model. In areas where stronger clumping or roughness was needed, I used brighter values; in zones requiring a softer look, darker values. This approach allowed for fine-tuned micro-level control of the fur shader and helped achieve a highly realistic appearance in renders.The face required special attention: the fur had to be neat, evenly distributed, and still visually appealing. The biggest challenge here was working around the eye area. Even with properly adjusted Weight Paint, interpolation sometimes caused strands to creep into the eyes.I spent a lot of time cleaning up this region to get an optimal result. I also had to revisit certain patches that looked bald, even though interpolation and weight painting were set correctly, because the fur didn't render properly there. These areas needed manual fixing.As part of the detailing stage, I also increased the number of segments in the Hair Guides.While the blocking phase only used two segments, I went up to three, and in some cases even five, for more complex regions. This gave me much more control over fur shape and flow.The tiniest details really matter, so I added extra fur layers with thinner, more chaotic strands extending slightly beyond the main silhouette. These micro-layers significantly improved the texture depth and boosted the overall realism.Aside from the grooming itself, I paid special attention to the fur material setup, as the shader plays a critical role in the final visual quality of the render. It's not enough to simply plug a color texture into a Principled BSDF node and call it done.I built a more complex shader, giving me precise control over various attributes. For example, I implemented subtle color variation across individual strands, along with darkening near the roots and a gradual brightening toward the tips. This helped add visual depth and made the fur look significantly more natural and lifelike.Working on the fur took up nearly half of the total time I spent on the entire model. And I'm genuinely happy with the result, this stage confirmed that the training I've gone through was solid and that I’m heading in the right direction with my artistic development.Rigging, Posing & SceneOnce I finished working on the fur, I rendered several 4K test shots from different angles to make sure every detail looked the way I intended. When I was fully satisfied with the results, it was time to move on to rigging.I divided the rigging process into three main parts:Body rig, for posing and positioning the characterFacial rig, for expressions and emotionsEar rig, for dynamic ear controlRigging isn't something I consider my strongest skill, but as a 3D generalist, I had to dive into many technical aspects of it. For the ears, I set up a relatively simple system with several bones connected using inverse kinematics. This gave me flexible and intuitive control during posing and allowed for the addition of dynamic movement in animation.For facial rigging, I used the FaceIt add-on, which generates a complete facial control system for mouth, eyes, and tongue. It sped up the process significantly and gave me more precision. For the body, I used the ActorCore Rig by NVIDIA, then converted it to Rigify, which gave me a familiar interface and flexible control over poses.Posing is one of my favorite stages, it's when the character really comes to life. As usual, it started with gathering references. Honestly, it was hard to pick the final poses, Stitch is so expressive and full of personality that I wanted to try hundreds of them. But I focused on those that best conveyed the spirit and mood of the character. Some poses I reworked to fit my style rather than copying directly. For example, in the pose where Stitch licks his nose, I added drool and a bit of "green slime" for comedic effect. To capture motion, I tilted his head back and made the ears fly upward, creating a vivid, emotional snapshot.Just like in sculpting or grooming, minor details make a big difference in posing. Examples include: a slight asymmetry in the facial expression, a raised corner of the mouth, one eye squinting a little more than the other, and ears set at slightly different angles.These are subtle things that might not be noticed immediately, but they’re the key to making the character feel alive and believable.For each pose, I created a separate scene and collection in Blender, including the character, specific lighting setup, and a simple background or environment. This made it easy to return to any scene later, to adjust lighting, reposition the character, or tweak the background.In one of the renders, which I used as the cover image, Stitch is holding a little frog.I want to clearly note that the 3D model of the frog is not mine, full credit goes to the original author of the asset.At first, I wanted to build a full environment around Stitch, to create a scene that would feel like a frame from a film. But after carefully evaluating my skills and priorities, I decided that a weak environment would only detract from the strength of the character. So I opted for a simple, neutral backdrop, designed to keep all the focus on Stitch himself.Rendering, Lighting & Post-ProcessingWhen the character is complete, posed expressively, and integrated into the scene, there's one final step: lighting. Lighting isn't just a technical element of the scene — it’s a full-fledged stage of the 3D pipeline. It doesn't just illuminate; it paints. Proper lighting can highlight the personality of the character, emphasize forms, and create atmosphere.For all my renders, I rely on the classic three-point lighting setup: Key Light, Fill Light, and Rim Light.While this setup is well-known, it remains highly effective. When done thoughtfully, with the right intensity, direction, and color temperature, it creates a strong light-shadow composition that brings the model to life. In addition to the three main lights, I also use an HDRI map, but with very low intensity, around 0.3, just enough to subtly enrich the ambient light without overpowering the scene.Once everything is set, it's time to hit Render and wait for the result. Due to hardware limitations, I wasn’t able to produce full animated shots with fur. Rendering a single 4K image with fur took over an hour, so I limited myself to a 360° turnaround and several static renders.I don't spend too much time on post-processing, just basic refinements in Photoshop. Slight enhancement of the composition, gentle shadow adjustments, color balance tweaks, and adding a logo. Everything is done subtly, nothing overprocessed. The goal is simply to support and enhance what’s already there.Final ThoughtsThis project has been an incredible experience. Although it was my second time creating Stitch, this time the process felt completely different at every stage. And honestly, it wasn't easy.But that was exactly the point: to challenge myself. To reimagine something familiar, to try things I'd never done before, and to walk the full journey from start to finish. The fur, the heart of this project, was especially meaningful to me. It’s what started it all. I poured a lot into this model: time, effort, emotion, and even doubts. But at the same time, I brought all my knowledge, skills, and experience into it.This work became a mirror of my progress from 2023 to 2025. I can clearly see how far I've come, and that gives me the motivation to keep going. Every hour of learning and practice paid off, the results speak for themselves. This model was created for my portfolio. I don't plan to use it commercially, unless, of course, a studio actually wants to license it for a new filmIt's been a long road: challenging, sometimes exhausting, but above all inspiring and exciting. I know there's still a lot to learn. Many things to study, improve, and polish to perfection. But I'm already on that path, and I'm not stopping.Oleh Yakushev, 3D Character ArtistInterview conducted by Gloria Levine #fur #grooming #techniques #realistic #stitch
    Fur Grooming Techniques For Realistic Stitch In Blender
    80.lv
    IntroductionHi everyone! My name is Oleh Yakushev, and I'm a 3D Artist from Ukraine. My journey into 3D began just three years ago, when I was working as a mobile phone salesperson at a shopping mall. In 2022, during one slow day at work, I noticed a colleague learning Python. We started talking about life goals. I told him I wanted to switch careers, to do something creative, but programming wasn't really my thing.He asked me a simple question: "Well, what do you actually enjoy doing?"I said, "Video games. I love video games. But I don't have time to learn how to make them, I've got a job, a family, and a kid."Then he hit me with something that really shifted my whole perspective."Oleh, do you play games on your PlayStation?"I said, "Of course."He replied, "Then why not take the time you spend playing and use it to learn how to make games?"That moment flipped a switch in my mind. I realized that I did have time, it was just a matter of how I used it. If I really wanted to learn, I could find a way. At the time, I didn't even own a computer. But where there's a will, there's a way: I borrowed my sister's laptop for a month and started following beginner 3D tutorials on YouTube. Every night after work, once my family went to sleep, I'd sit in the kitchen and study. I stayed up until 2 or 3 AM, learning Blender basics. Then I'd sleep for a few hours before waking up at 6 AM to go back to work. That's how I spent my first few months in 3D, studying every single night.3D completely took over my life. During lunch breaks, I watched 3D videos, on the bus, I scrolled through 3D TikToks, at home, I took 3D courses, and the word "3D" just became a constant in my vocabulary.After a few months of learning the basics, I started building my portfolio, which looks pretty funny to me now. But at the time, it was a real sign of how committed I was. Eventually, someone reached out to me through Behance, offering my first freelance opportunity. And thatэs how my journey began, from mall clerk to 3D artist. It's been a tough road, full of burnout, doubts, and late nights... but also full of curiosity, growth, and hope. And I wouldn't trade it for anything.The Stitch ProjectI've loved Stitch since I was a kid. I used to watch the cartoons, play the video games, and he always felt like such a warm, funny, chill, and at the same time, strong character. So once I reached a certain level in 3D, I decided to recreate Stitch.Back then, my skills only allowed me to make him in a stylized cartoonish style, no fur, no complex detailing, no advanced texturing, I just didn't have the experience. Surprisingly, the result turned out pretty decent. Even now, I sometimes get comments that my old Stitch still looks quite cute. Though honestly, I wouldn't say that myself anymore. Two years have passed since I made that first Stitch, it was back in 2023. And in 2025, I decided it was time to challenge myself.At that point, I had just completed an intense grooming course. Grooming always intimidated me, it felt really complex. I avoided it on commercial projects, made a few failed attempts for my portfolio, and overall tried to steer clear of any tasks where grooming was required. But eventually, I found the strength to face it.I pushed myself to learn how to make great fur, and I did. I finally understood how the grooming system works, grasped the logic, the tools, and the workflow. And after finishing the course, I wanted to lock in all that knowledge by creating a full personal project from scratch.So my goal was to make a character from the ground up, where the final stage would be grooming. And without thinking too long, I chose Stitch.First, because I truly love the character. Second, I wanted to clearly see my own progress over the past two years. Third, I needed to put my new skills to the test and find out whether my training had really paid off.ModelingI had a few ideas for how to approach the base mesh for this project. First, to model everything completely from scratch, starting with a sphere. Second, to reuse my old Stitch model and upgrade it.But then an idea struck me: why not test how well AI could handle a base mesh? I gathered some references and tried generating a base mesh using AI, uploading Stitch visuals as a guide. As you can see from the screenshot, the result was far from usable. So I basically ended up doing everything from scratch anyway.So, I went back to basics: digging through ArtStation and Pinterest, collecting references. Since over the last two years, I had not only learned grooming but also completely changed my overall approach to character creation, it was important for me to make a more detailed model, even if much of it would be hidden under fur.The first Stitch was sculpted in Blender, with all the limitations that come with sculpting in it. But since then, I've leveled up significantly and switched to more advanced tools. So this second version of Stitch was born in ZBrush. By the time I started working on this Stitch, ZBrush had already become my second main workspace. I've used it to deliver tons of commercial projects, I work in it almost daily, and most of my portfolio was created using this tool. I found some great reference images showing Stitch's body structure. Among them were official movie references and a stunning high-poly model created by Juan Hernández, a version of Stitch without fur. That model became my primary reference for sculpting.Truth is, Stitch's base form is quite simple, so blocking out the shape didn't take too long. When blocking, I use Blender in combination with ZBrush:I work with primary forms in ZBrushThen check proportions in BlenderFix mistakes, tweak volumes, and refine the silhouetteSince Stitch's shape isn't overly complex, I broke him down into three main sculpting parts:The body: arms, legs, head, and earsThe nose, eyes, and mouth cavityWhile planning the sculpt, I already knew I'd be rigging Stitch, both body and facial rig. So I started sculpting with his mouth open (to later close it and have more flexibility when it comes to rigging and deformation).While studying various references, I noticed something interesting. Stitch from promotional posters, Stitch from the movie, and Stitch as recreated by different artists on ArtStation all look very different from one another. What surprised me the most was how different the promo version of Stitch is compared to the one in the actual movie. They are essentially two separate models:Different proportionsDifferent shapesDifferent texturesEven different fur and overall designThis presented a creative challenge, I had to develop my own take on Stitch's design. Sometimes I liked the way the teeth were done in one version, in another, the eye placement, in another, the fur shape, or the claw design on hands and feet.At first, considering that Stitch is completely covered in fur from head to toe, sculpting his underlying anatomy seemed pointless. I kept asking myself: "Why sculpt muscles and skin detail if everything will be hidden under fur anyway?"But eventually, I found a few solid answers for myself. First, having a defined muscle structure actually makes the fur grooming process easier. That's because fur often follows the flow of muscle lines, so having those muscles helps guide fur direction more accurately across the character's body.Second, it's great anatomy practice, and practice is never a waste. So, I found a solid anatomical reference of Stitch with clearly visible muscle groups and tried to recreate that structure as closely as possible in my own sculpt.In the end, I had to develop a full visual concept by combining elements from multiple versions of Stitch. Through careful reference work and constantly switching between Blender and ZBrush, I gradually, but intentionally, built up the body and overall look of our favorite fluffy alien.Topology & UVsThroughout the sculpting process, I spent quite a bit of time thinking about topology. I was looking for the most balanced solution between quality and production time. Normally, I do manual retopology for my characters, but this time, I knew it would take too much time, and honestly, I didn't have that luxury.So I decided to generate the topology using ZBrush's tools. I split the model into separate parts using Polygroups, assigning individual groups for the ears, the head, the torso, the arms, the legs, and each of Stitch's fingers.With the Polygroups in place, I used ZRemesher with Keep Groups enabled and smoothing on group borders. This gave me a clean and optimized mesh that was perfect for UV unwrapping.Of course, this kind of auto-retopology isn't a full substitute for manual work, but it saved me a huge amount of time, and the quality was still high enough for what I needed. However, there was one tricky issue. Although Stitch looks symmetrical at first glance, his ears are actually asymmetrical. The right ear has a scar on the top, while the left has a scar on the bottomBecause of that, I couldn't just mirror one side in ZBrush without losing those unique features. Here's what I ended up doing: I created a symmetrical model with the right ear, then another symmetrical model with the left ear. I brought both into Blender, detached the left ear from one model, and attached it to the body of the other one. This way, I got a clean, symmetrical base mesh with asymmetrical ears, preserving both topology and detail. And thanks to the clean polygroup-based layout, I was able to unwrap the UVs with nice, even seams and clean islands.When it came to UV mapping, I divided Stitch into two UDIM tiles:The first UDIM includes the head with ears, torso, arms, and legs.The second UDIM contains all the additional parts: teeth, tongue, gums, claws, and nose (For the claws, I used overlapping UVs to preserve texel density for the other parts)Since the nose is one of the most important details, I allocated the largest space to it, which helped me to better capture its intricate details.As for the eyes, I used procedural eyes, so there was no need to assign UV space or create a separate UDIM for texturing them. To achieve this, I used the Tiny Eye add-on by tinynocky for Blender, which allows full control over procedural eyes and their parameters.This approach gave me high-quality eyes with customizable elements tailored exactly to my needs. As a result of all these steps, Stitch ended up with a symmetrical, optimized mesh, asymmetrical ears, and the body split across two UDIMs, one for the main body and one for the additional parts.TexturingWhen planning Stitch's texturing, I understood that the main body texture would be fairly simple, with much of the visual detail enhanced by the fur. However, there were some areas that required much more attention than the rest of the body. The textures for Stitch can be roughly divided into several main parts:The base body, which includes the primary color of his fur, along with additional shading like a lighter tone on the front (belly) and a darker tone on the back and napeThe nose and ears, these zones, demanded separate focusAt the initial texturing/blocking stage, the ears looked too cartoony, which didn’t fit the style I wanted. So, I decided to push them towards a more realistic look. This involved removing bright colors, adding more variation in the roughness map, introducing variation in the base color, and making the ears visually more natural, layered, and textured on the surface. By combining smart materials and masks, I achieved the effect of "living" ears, slightly dirty and looking as natural as possible.The nose was a separate story. It occupies a significant part of the face and thus draws a lot of attention. While studying references, I noticed that the shape and texture of the nose vary a lot between different artists. Initially, I made it dog-like, with some wear and tear around the nostrils and base.For a long time, I thought this version was acceptable. But during test renders, I realized the nose needed improvement. So I reworked its texturing, aiming to make it more detailed. I divided the nose texture into four main layers:Base detail: Baked from the high-poly model. Over this, I applied a smart skin material that added characteristic bumps.Lighter layer: Applied via a mask using the AO channel. This darkened the crevices and brightened the bumps, creating a multi-layered effect.Organic detail (capillaries): In animal references, I noticed slight redness in the nose area. I created another AO-masked layer with reddish capillaries visible through the bumps, adding depth and realism.Softness: To make the nose visually softer, like in references, I added a fill layer with only height enabled, used a paper texture as grayscale, and applied a blurred mask. This created subtle dents and wrinkles that softened the look.All textures were created in 4K resolution to achieve maximum detail. After finishing the main texturing stage, I add an Ambient Occlusion map on the final texture layer, activating only the Color channel, setting the blend mode to Multiply, and reducing opacity to about 35%. This adds volume and greatly improves the overall perception of the model.That covers the texturing of Stitch’s body. I also created a separate texture for the fur. This was simpler, I disabled unnecessary layers like ears and eyelids, and left only the base ones corresponding to the body’s color tones.During grooming (which I'll cover in detail later), I also created textures for the fur's clamps and roughness. In Substance 3D Painter, I additionally painted masks for better fur detail.FurAnd finally, I moved on to the part that was most important to me, the very reason I started this project in the first place. Fur. This entire process was essentially a test of my fur grooming skills. After overcoming self-doubt, I trusted the process and relied on everything I had learned so far. Before diving into the grooming itself, I made sure to gather strong references. I searched for the highest quality and most inspiring examples I could find and analyzed them thoroughly. My goal was to clearly understand the direction of fur growth, its density and volume, the intensity of roughness, and the strength of clumping in different areas of Stitch's body.To create the fur, I used Blender and its Hair Particle System. The overall approach is similar to sculpting a high-detail model: work from broad strokes to finer details. So, the first step was blocking out the main flow and placement of the hair strands.At this point, I ran into a challenge: symmetry. Since the model was purposefully asymmetrical (because of the ears and skin folds), the fur couldn't be mirrored cleanly. To solve this, I created a base fur blocking using Hair Guides with just two segments. After that, I split the fur into separate parts. I duplicated the main Particle System and created individual hair systems for each area where needed.In total, I broke Stitch's body into key sections: head, left ear, right ear, front torso, back torso, arms, hands, upper and lower legs, toes, and additional detailing layers. The final fur setup included 25 separate particle systems.To control fur growth, I used Weight Paint to fine-tune the influence on each body part individually. This separation gave me much more precision and allowed full control over every parameter of the fur on a per-section basis.The most challenging aspect of working with fur is staying patient and focused. Detail is absolutely critical because the overall picture is built entirely from tiny, subtle elements. Once the base layer was complete, I moved on to refining the fur based on my references.The most complex areas turned out to be the front of the torso and the face. When working on the torso, my goal was to create a smooth gradient, from thick, clumped fur on the chest to shorter, softer fur on the stomach.Step by step, I adjusted the transitions, directions, clumps, and volumes to achieve that look. Additionally, I used the fur itself to subtly enhance Stitch's silhouette, making his overall shape feel sharper, more expressive, and visually engaging.During fur development, I used texture maps to control the intensity of the Roughness and Clump parameters. This gave me a high degree of flexibility, textures drove these attributes across the entire model. In areas where stronger clumping or roughness was needed, I used brighter values; in zones requiring a softer look, darker values. This approach allowed for fine-tuned micro-level control of the fur shader and helped achieve a highly realistic appearance in renders.The face required special attention: the fur had to be neat, evenly distributed, and still visually appealing. The biggest challenge here was working around the eye area. Even with properly adjusted Weight Paint, interpolation sometimes caused strands to creep into the eyes.I spent a lot of time cleaning up this region to get an optimal result. I also had to revisit certain patches that looked bald, even though interpolation and weight painting were set correctly, because the fur didn't render properly there. These areas needed manual fixing.As part of the detailing stage, I also increased the number of segments in the Hair Guides.While the blocking phase only used two segments, I went up to three, and in some cases even five, for more complex regions. This gave me much more control over fur shape and flow.The tiniest details really matter, so I added extra fur layers with thinner, more chaotic strands extending slightly beyond the main silhouette. These micro-layers significantly improved the texture depth and boosted the overall realism.Aside from the grooming itself, I paid special attention to the fur material setup, as the shader plays a critical role in the final visual quality of the render. It's not enough to simply plug a color texture into a Principled BSDF node and call it done.I built a more complex shader, giving me precise control over various attributes. For example, I implemented subtle color variation across individual strands, along with darkening near the roots and a gradual brightening toward the tips. This helped add visual depth and made the fur look significantly more natural and lifelike.Working on the fur took up nearly half of the total time I spent on the entire model. And I'm genuinely happy with the result, this stage confirmed that the training I've gone through was solid and that I’m heading in the right direction with my artistic development.Rigging, Posing & SceneOnce I finished working on the fur, I rendered several 4K test shots from different angles to make sure every detail looked the way I intended. When I was fully satisfied with the results, it was time to move on to rigging.I divided the rigging process into three main parts:Body rig, for posing and positioning the characterFacial rig, for expressions and emotionsEar rig, for dynamic ear controlRigging isn't something I consider my strongest skill, but as a 3D generalist, I had to dive into many technical aspects of it. For the ears, I set up a relatively simple system with several bones connected using inverse kinematics (IK). This gave me flexible and intuitive control during posing and allowed for the addition of dynamic movement in animation.For facial rigging, I used the FaceIt add-on, which generates a complete facial control system for mouth, eyes, and tongue. It sped up the process significantly and gave me more precision. For the body, I used the ActorCore Rig by NVIDIA, then converted it to Rigify, which gave me a familiar interface and flexible control over poses.Posing is one of my favorite stages, it's when the character really comes to life. As usual, it started with gathering references. Honestly, it was hard to pick the final poses, Stitch is so expressive and full of personality that I wanted to try hundreds of them. But I focused on those that best conveyed the spirit and mood of the character. Some poses I reworked to fit my style rather than copying directly. For example, in the pose where Stitch licks his nose, I added drool and a bit of "green slime" for comedic effect. To capture motion, I tilted his head back and made the ears fly upward, creating a vivid, emotional snapshot.Just like in sculpting or grooming, minor details make a big difference in posing. Examples include: a slight asymmetry in the facial expression, a raised corner of the mouth, one eye squinting a little more than the other, and ears set at slightly different angles.These are subtle things that might not be noticed immediately, but they’re the key to making the character feel alive and believable.For each pose, I created a separate scene and collection in Blender, including the character, specific lighting setup, and a simple background or environment. This made it easy to return to any scene later, to adjust lighting, reposition the character, or tweak the background.In one of the renders, which I used as the cover image, Stitch is holding a little frog.I want to clearly note that the 3D model of the frog is not mine, full credit goes to the original author of the asset.At first, I wanted to build a full environment around Stitch, to create a scene that would feel like a frame from a film. But after carefully evaluating my skills and priorities, I decided that a weak environment would only detract from the strength of the character. So I opted for a simple, neutral backdrop, designed to keep all the focus on Stitch himself.Rendering, Lighting & Post-ProcessingWhen the character is complete, posed expressively, and integrated into the scene, there's one final step: lighting. Lighting isn't just a technical element of the scene — it’s a full-fledged stage of the 3D pipeline. It doesn't just illuminate; it paints. Proper lighting can highlight the personality of the character, emphasize forms, and create atmosphere.For all my renders, I rely on the classic three-point lighting setup: Key Light, Fill Light, and Rim Light.While this setup is well-known, it remains highly effective. When done thoughtfully, with the right intensity, direction, and color temperature, it creates a strong light-shadow composition that brings the model to life. In addition to the three main lights, I also use an HDRI map, but with very low intensity, around 0.3, just enough to subtly enrich the ambient light without overpowering the scene.Once everything is set, it's time to hit Render and wait for the result. Due to hardware limitations, I wasn’t able to produce full animated shots with fur. Rendering a single 4K image with fur took over an hour, so I limited myself to a 360° turnaround and several static renders.I don't spend too much time on post-processing, just basic refinements in Photoshop. Slight enhancement of the composition, gentle shadow adjustments, color balance tweaks, and adding a logo. Everything is done subtly, nothing overprocessed. The goal is simply to support and enhance what’s already there.Final ThoughtsThis project has been an incredible experience. Although it was my second time creating Stitch (the first was back in 2023), this time the process felt completely different at every stage. And honestly, it wasn't easy.But that was exactly the point: to challenge myself. To reimagine something familiar, to try things I'd never done before, and to walk the full journey from start to finish. The fur, the heart of this project, was especially meaningful to me. It’s what started it all. I poured a lot into this model: time, effort, emotion, and even doubts. But at the same time, I brought all my knowledge, skills, and experience into it.This work became a mirror of my progress from 2023 to 2025. I can clearly see how far I've come, and that gives me the motivation to keep going. Every hour of learning and practice paid off, the results speak for themselves. This model was created for my portfolio. I don't plan to use it commercially, unless, of course, a studio actually wants to license it for a new film (in that case, I'd be more than happy!)It's been a long road: challenging, sometimes exhausting, but above all inspiring and exciting. I know there's still a lot to learn. Many things to study, improve, and polish to perfection. But I'm already on that path, and I'm not stopping.Oleh Yakushev, 3D Character ArtistInterview conducted by Gloria Levine
    Like
    Love
    Wow
    Sad
    Angry
    574
    · 2 التعليقات ·0 المشاركات
  • Creating a Detailed Helmet Inspired by Fallout Using Substance 3D

    IntroductionHi! My name is Pavel Vorobyev, and I'm a 19-year-old 3D Artist specializing in texturing and weapon creation for video games. I've been working in the industry for about 3 years now. During this time, I've had the opportunity to contribute to several exciting projects, including Arma, DayZ, Ratten Reich, and a NEXT-GEN sci-fi shooter. Here's my ArtStation portfolio.My journey into 3D art began in my early teens, around the age of 13 or 14. At some point, I got tired of just playing games and started wondering: "How are they actually made?" That question led me to explore game development. I tried everything – level design, programming, game design – but it was 3D art that truly captured me.I'm entirely self-taught. I learned everything from YouTube, tutorials, articles, and official documentation, gathering knowledge piece by piece. Breaking into the commercial side of the industry wasn't easy: there were a lot of failures, no opportunities, and no support. At one point, I even took a job at a metallurgical plant. But I kept pushing forward, kept learning and improving my skills in 3D. Eventually, I got my first industry offer – and that's when my real path began.Today, I continue to grow, constantly experimenting with new styles, tools, and techniques. For me, 3D isn't just a profession – it's a form of self-expression and a path toward my dream. My goal is to build a strong career in the game industry and eventually move into cinematic storytelling in the spirit of Love, Death & Robots.Astartes YouTube channelI also want to inspire younger artists and show how powerful texturing can be as a creative tool. To demonstrate that, I'd love to share my personal project PU – Part 1, which reflects my passion and approach to texture art.In this article, I'll be sharing my latest personal project – a semi-realistic sci-fi helmet that I created from scratch, experimenting with both form and style. It's a personal exploration where I aimed to step away from traditional hyperrealism and bring in a touch of artistic expression.Concept & Project IdeaThe idea behind this helmet project came from a very specific goal – to design a visually appealing asset with rich texture variation and achieve a balance between stylization and realism. I wanted to create something that looked believable, yet had an artistic flair. Since I couldn't find any fitting concepts online, I started building the design from scratch in my head. I eventually settled on creating a helmet as the main focus of the project. For visual direction, I drew inspiration from post-apocalyptic themes and the gritty aesthetics of Fallout and Warhammer 40,000.Software & Tools UsedFor this project, I used Blender, ZBrush, Substance 3D Painter, Marmoset Toolbag 5, Photoshop, and RizomUV. I created the low-poly mesh in Blender and developed the concept and high-poly sculpt in ZBrush. In Substance 3D Painter, I worked on the texture concept and final texturing. Baking and rendering were done in Marmoset Toolbag, and I used Photoshop for some adjustments to the bake. UV unwrapping was handled in RizomUV.Modeling & RetopologyI began the development process by designing the concept based on my earlier references – Fallout and Warhammer 40,000. The initial blockout was done in ZBrush, and from there, I started refining the shapes and details to create something visually engaging and stylistically bold.After completing the high-poly model, I moved on to the long and challenging process of retopology. Since I originally came from a weapons-focused background, I applied the knowledge I gained from modeling firearms. I slightly increased the polycount to achieve a cleaner and more appealing look in the final render – reducing visible faceting. My goal was to strike a balance between visual quality and a game-ready asset.UV Mapping & BakingNext, I moved on to UV mapping. There's nothing too complex about this stage, but since my goal was to create a game-ready asset, I made extensive use of overlaps. I did the UVs in Rizom UV. The most important part is to align the UV shells into clean strips and unwrap cylinders properly into straight lines.Once the UVs were done, I proceeded to bake the normal and ambient occlusion maps. At this stage, the key is having clean UVs and solid retopology – if those are in place, the bake goes smoothly. Texturing: Concept & WorkflowNow we move on to the most challenging stage – texturing. I aimed to present the project in a hyperrealistic style with a touch of stylization. This turned out to be quite difficult, and I went through many iterations. The most important part of this phase was developing a solid texture concept: rough decals, color combinations, and overall material direction. Without that foundation, it makes no sense to move forward with the texturing. After a long process of trial and error, I finally arrived at results I was satisfied with.Then I followed my pipeline:1. Working on the base materials2. Storytelling and damage3. Decals4. Spraying, dust, and dirtWorking on the Base MaterialsWhen working on the base materials, the main thing is to work with the physical properties and texture. You need to extract the maximum quality from the generators before manual processing. The idea was to create the feeling of an old, heavy helmet that had lived its life and had previously been painted a different color. To make it battered and, in a sense, rotten.It is important to pay attention to noise maps – Dirt 3, Dirt 6, White Noise, Flakes – and add the feel of old metal with custom Normal Maps. I also mixed in photo textures for a special charm. PhototextureCustom Normal Map TextureStorytelling & DamageGradients play an important role in the storytelling stage. They make the object artistically dynamic and beautiful, adding individual shades that bring the helmet to life.Everything else is done manually. I found a bunch of old helmets from World War II and took alpha damage shots of them using Photoshop. I drew the damage with alphas, trying to clearly separate the material into old paint, new paint, rust, and bare metal.I did the rust using MatFX Rust from the standard Substance 3D Painter library. I drew beautiful patterns using paint in multiply mode – this quickly helped to recreate the rust effect. Metal damage and old paint were more difficult: due to the large number of overlaps in the helmet, I had to carefully draw patterns, minimizing the visibility of overlaps.DecalsI drew the decals carefully, sticking to the concept, which added richness to the texture.Spray Paint & DirtFor spray paint and dirt, I used a long-established weapon template consisting of dust particles, sand particles, and spray paint. I analyzed references and applied them to crevices and logical places where dirt could accumulate.Rendering & Post-ProcessingI rendered in Marmoset Toolbag 5 using a new rendering format that I developed together with the team. The essence of the method is to simulate "RAW frames." Since Marmoset does not have such functions, I worked with the EXR 32-BIT format, which significantly improves the quality of the render: the shadows are smooth, without artifacts and broken gradients. I assembled the scene using Quixel Megascans. After rendering, I did post-processing in Photoshop utilizing Filter Camera Raw. Conclusion & Advice for BeginnersThat's all. For beginners or those who have been unsuccessful in the industry for a long time, I advise you to follow your dream and not listen to anyone else. Success is a matter of time and skill! Talent is not something you are born with; it is something you develop. Work on yourself and your work, put your heart into it, and you will succeed!Pavel Vorobiev, Texture ArtistInterview conducted by Gloria Levine
    #creating #detailed #helmet #inspired #fallout
    Creating a Detailed Helmet Inspired by Fallout Using Substance 3D
    IntroductionHi! My name is Pavel Vorobyev, and I'm a 19-year-old 3D Artist specializing in texturing and weapon creation for video games. I've been working in the industry for about 3 years now. During this time, I've had the opportunity to contribute to several exciting projects, including Arma, DayZ, Ratten Reich, and a NEXT-GEN sci-fi shooter. Here's my ArtStation portfolio.My journey into 3D art began in my early teens, around the age of 13 or 14. At some point, I got tired of just playing games and started wondering: "How are they actually made?" That question led me to explore game development. I tried everything – level design, programming, game design – but it was 3D art that truly captured me.I'm entirely self-taught. I learned everything from YouTube, tutorials, articles, and official documentation, gathering knowledge piece by piece. Breaking into the commercial side of the industry wasn't easy: there were a lot of failures, no opportunities, and no support. At one point, I even took a job at a metallurgical plant. But I kept pushing forward, kept learning and improving my skills in 3D. Eventually, I got my first industry offer – and that's when my real path began.Today, I continue to grow, constantly experimenting with new styles, tools, and techniques. For me, 3D isn't just a profession – it's a form of self-expression and a path toward my dream. My goal is to build a strong career in the game industry and eventually move into cinematic storytelling in the spirit of Love, Death & Robots.Astartes YouTube channelI also want to inspire younger artists and show how powerful texturing can be as a creative tool. To demonstrate that, I'd love to share my personal project PU – Part 1, which reflects my passion and approach to texture art.In this article, I'll be sharing my latest personal project – a semi-realistic sci-fi helmet that I created from scratch, experimenting with both form and style. It's a personal exploration where I aimed to step away from traditional hyperrealism and bring in a touch of artistic expression.Concept & Project IdeaThe idea behind this helmet project came from a very specific goal – to design a visually appealing asset with rich texture variation and achieve a balance between stylization and realism. I wanted to create something that looked believable, yet had an artistic flair. Since I couldn't find any fitting concepts online, I started building the design from scratch in my head. I eventually settled on creating a helmet as the main focus of the project. For visual direction, I drew inspiration from post-apocalyptic themes and the gritty aesthetics of Fallout and Warhammer 40,000.Software & Tools UsedFor this project, I used Blender, ZBrush, Substance 3D Painter, Marmoset Toolbag 5, Photoshop, and RizomUV. I created the low-poly mesh in Blender and developed the concept and high-poly sculpt in ZBrush. In Substance 3D Painter, I worked on the texture concept and final texturing. Baking and rendering were done in Marmoset Toolbag, and I used Photoshop for some adjustments to the bake. UV unwrapping was handled in RizomUV.Modeling & RetopologyI began the development process by designing the concept based on my earlier references – Fallout and Warhammer 40,000. The initial blockout was done in ZBrush, and from there, I started refining the shapes and details to create something visually engaging and stylistically bold.After completing the high-poly model, I moved on to the long and challenging process of retopology. Since I originally came from a weapons-focused background, I applied the knowledge I gained from modeling firearms. I slightly increased the polycount to achieve a cleaner and more appealing look in the final render – reducing visible faceting. My goal was to strike a balance between visual quality and a game-ready asset.UV Mapping & BakingNext, I moved on to UV mapping. There's nothing too complex about this stage, but since my goal was to create a game-ready asset, I made extensive use of overlaps. I did the UVs in Rizom UV. The most important part is to align the UV shells into clean strips and unwrap cylinders properly into straight lines.Once the UVs were done, I proceeded to bake the normal and ambient occlusion maps. At this stage, the key is having clean UVs and solid retopology – if those are in place, the bake goes smoothly. Texturing: Concept & WorkflowNow we move on to the most challenging stage – texturing. I aimed to present the project in a hyperrealistic style with a touch of stylization. This turned out to be quite difficult, and I went through many iterations. The most important part of this phase was developing a solid texture concept: rough decals, color combinations, and overall material direction. Without that foundation, it makes no sense to move forward with the texturing. After a long process of trial and error, I finally arrived at results I was satisfied with.Then I followed my pipeline:1. Working on the base materials2. Storytelling and damage3. Decals4. Spraying, dust, and dirtWorking on the Base MaterialsWhen working on the base materials, the main thing is to work with the physical properties and texture. You need to extract the maximum quality from the generators before manual processing. The idea was to create the feeling of an old, heavy helmet that had lived its life and had previously been painted a different color. To make it battered and, in a sense, rotten.It is important to pay attention to noise maps – Dirt 3, Dirt 6, White Noise, Flakes – and add the feel of old metal with custom Normal Maps. I also mixed in photo textures for a special charm. PhototextureCustom Normal Map TextureStorytelling & DamageGradients play an important role in the storytelling stage. They make the object artistically dynamic and beautiful, adding individual shades that bring the helmet to life.Everything else is done manually. I found a bunch of old helmets from World War II and took alpha damage shots of them using Photoshop. I drew the damage with alphas, trying to clearly separate the material into old paint, new paint, rust, and bare metal.I did the rust using MatFX Rust from the standard Substance 3D Painter library. I drew beautiful patterns using paint in multiply mode – this quickly helped to recreate the rust effect. Metal damage and old paint were more difficult: due to the large number of overlaps in the helmet, I had to carefully draw patterns, minimizing the visibility of overlaps.DecalsI drew the decals carefully, sticking to the concept, which added richness to the texture.Spray Paint & DirtFor spray paint and dirt, I used a long-established weapon template consisting of dust particles, sand particles, and spray paint. I analyzed references and applied them to crevices and logical places where dirt could accumulate.Rendering & Post-ProcessingI rendered in Marmoset Toolbag 5 using a new rendering format that I developed together with the team. The essence of the method is to simulate "RAW frames." Since Marmoset does not have such functions, I worked with the EXR 32-BIT format, which significantly improves the quality of the render: the shadows are smooth, without artifacts and broken gradients. I assembled the scene using Quixel Megascans. After rendering, I did post-processing in Photoshop utilizing Filter Camera Raw. Conclusion & Advice for BeginnersThat's all. For beginners or those who have been unsuccessful in the industry for a long time, I advise you to follow your dream and not listen to anyone else. Success is a matter of time and skill! Talent is not something you are born with; it is something you develop. Work on yourself and your work, put your heart into it, and you will succeed!Pavel Vorobiev, Texture ArtistInterview conducted by Gloria Levine #creating #detailed #helmet #inspired #fallout
    Creating a Detailed Helmet Inspired by Fallout Using Substance 3D
    80.lv
    IntroductionHi! My name is Pavel Vorobyev, and I'm a 19-year-old 3D Artist specializing in texturing and weapon creation for video games. I've been working in the industry for about 3 years now. During this time, I've had the opportunity to contribute to several exciting projects, including Arma, DayZ, Ratten Reich, and a NEXT-GEN sci-fi shooter (currently under NDA). Here's my ArtStation portfolio.My journey into 3D art began in my early teens, around the age of 13 or 14. At some point, I got tired of just playing games and started wondering: "How are they actually made?" That question led me to explore game development. I tried everything – level design, programming, game design – but it was 3D art that truly captured me.I'm entirely self-taught. I learned everything from YouTube, tutorials, articles, and official documentation, gathering knowledge piece by piece. Breaking into the commercial side of the industry wasn't easy: there were a lot of failures, no opportunities, and no support. At one point, I even took a job at a metallurgical plant. But I kept pushing forward, kept learning and improving my skills in 3D. Eventually, I got my first industry offer – and that's when my real path began.Today, I continue to grow, constantly experimenting with new styles, tools, and techniques. For me, 3D isn't just a profession – it's a form of self-expression and a path toward my dream. My goal is to build a strong career in the game industry and eventually move into cinematic storytelling in the spirit of Love, Death & Robots.Astartes YouTube channelI also want to inspire younger artists and show how powerful texturing can be as a creative tool. To demonstrate that, I'd love to share my personal project PU – Part 1, which reflects my passion and approach to texture art.In this article, I'll be sharing my latest personal project – a semi-realistic sci-fi helmet that I created from scratch, experimenting with both form and style. It's a personal exploration where I aimed to step away from traditional hyperrealism and bring in a touch of artistic expression.Concept & Project IdeaThe idea behind this helmet project came from a very specific goal – to design a visually appealing asset with rich texture variation and achieve a balance between stylization and realism. I wanted to create something that looked believable, yet had an artistic flair. Since I couldn't find any fitting concepts online, I started building the design from scratch in my head. I eventually settled on creating a helmet as the main focus of the project. For visual direction, I drew inspiration from post-apocalyptic themes and the gritty aesthetics of Fallout and Warhammer 40,000.Software & Tools UsedFor this project, I used Blender, ZBrush, Substance 3D Painter, Marmoset Toolbag 5, Photoshop, and RizomUV. I created the low-poly mesh in Blender and developed the concept and high-poly sculpt in ZBrush. In Substance 3D Painter, I worked on the texture concept and final texturing. Baking and rendering were done in Marmoset Toolbag, and I used Photoshop for some adjustments to the bake. UV unwrapping was handled in RizomUV.Modeling & RetopologyI began the development process by designing the concept based on my earlier references – Fallout and Warhammer 40,000. The initial blockout was done in ZBrush, and from there, I started refining the shapes and details to create something visually engaging and stylistically bold.After completing the high-poly model, I moved on to the long and challenging process of retopology. Since I originally came from a weapons-focused background, I applied the knowledge I gained from modeling firearms. I slightly increased the polycount to achieve a cleaner and more appealing look in the final render – reducing visible faceting. My goal was to strike a balance between visual quality and a game-ready asset.UV Mapping & BakingNext, I moved on to UV mapping. There's nothing too complex about this stage, but since my goal was to create a game-ready asset, I made extensive use of overlaps. I did the UVs in Rizom UV. The most important part is to align the UV shells into clean strips and unwrap cylinders properly into straight lines.Once the UVs were done, I proceeded to bake the normal and ambient occlusion maps. At this stage, the key is having clean UVs and solid retopology – if those are in place, the bake goes smoothly. Texturing: Concept & WorkflowNow we move on to the most challenging stage – texturing. I aimed to present the project in a hyperrealistic style with a touch of stylization. This turned out to be quite difficult, and I went through many iterations. The most important part of this phase was developing a solid texture concept: rough decals, color combinations, and overall material direction. Without that foundation, it makes no sense to move forward with the texturing. After a long process of trial and error, I finally arrived at results I was satisfied with.Then I followed my pipeline:1. Working on the base materials2. Storytelling and damage3. Decals4. Spraying, dust, and dirtWorking on the Base MaterialsWhen working on the base materials, the main thing is to work with the physical properties and texture. You need to extract the maximum quality from the generators before manual processing. The idea was to create the feeling of an old, heavy helmet that had lived its life and had previously been painted a different color. To make it battered and, in a sense, rotten.It is important to pay attention to noise maps – Dirt 3, Dirt 6, White Noise, Flakes – and add the feel of old metal with custom Normal Maps. I also mixed in photo textures for a special charm. PhototextureCustom Normal Map TextureStorytelling & DamageGradients play an important role in the storytelling stage. They make the object artistically dynamic and beautiful, adding individual shades that bring the helmet to life.Everything else is done manually. I found a bunch of old helmets from World War II and took alpha damage shots of them using Photoshop. I drew the damage with alphas, trying to clearly separate the material into old paint, new paint, rust, and bare metal.I did the rust using MatFX Rust from the standard Substance 3D Painter library. I drew beautiful patterns using paint in multiply mode – this quickly helped to recreate the rust effect. Metal damage and old paint were more difficult: due to the large number of overlaps in the helmet, I had to carefully draw patterns, minimizing the visibility of overlaps.DecalsI drew the decals carefully, sticking to the concept, which added richness to the texture.Spray Paint & DirtFor spray paint and dirt, I used a long-established weapon template consisting of dust particles, sand particles, and spray paint. I analyzed references and applied them to crevices and logical places where dirt could accumulate.Rendering & Post-ProcessingI rendered in Marmoset Toolbag 5 using a new rendering format that I developed together with the team. The essence of the method is to simulate "RAW frames." Since Marmoset does not have such functions, I worked with the EXR 32-BIT format, which significantly improves the quality of the render: the shadows are smooth, without artifacts and broken gradients. I assembled the scene using Quixel Megascans. After rendering, I did post-processing in Photoshop utilizing Filter Camera Raw. Conclusion & Advice for BeginnersThat's all. For beginners or those who have been unsuccessful in the industry for a long time, I advise you to follow your dream and not listen to anyone else. Success is a matter of time and skill! Talent is not something you are born with; it is something you develop. Work on yourself and your work, put your heart into it, and you will succeed!Pavel Vorobiev, Texture ArtistInterview conducted by Gloria Levine
    Like
    Love
    Wow
    Sad
    Angry
    701
    · 2 التعليقات ·0 المشاركات
  • واش راكم يا جماعة؟ في هذا الزمن الغريب، كل واحد يحوس على طريقة باش يربح الفلوس، وصح، الكريبتو ولى في الواجهة. المقال الجديد يتحدث عن "Who's Getting Rich Off The $100 Billion Crypto Treasury Boom" ويفضح بعض الأسماء اللي كاينة ورا هاد البوم.

    يعني، هناك أكثر من 100 مليار دولار راهم يتنقلوا، وفيه ناس تحوس على الطرقات اللي تضمنلهم الربح. صراحة، هذا الموضوع يخليني نفكر في كيفاش نقدروا نستغلو الفرص اللي كاينة في السوق، ولكن لازم نكونوا واعيين بالمخاطر اللي فيها.

    فكروا شوية في مستقبلكم المالي، ماشي كل شي ذهب، لكن كاين فرص و لازم نعرفو كيفاش نستغلوها.

    https://forbesmiddleeast.com/money/cryptography-and-blockchain/whos-getting-rich-off-the-$100-billion-crypto-treasury-boom-1

    #كريبتو #فرص #استثمار #تكنولوجيا #مال
    🎉 واش راكم يا جماعة؟ في هذا الزمن الغريب، كل واحد يحوس على طريقة باش يربح الفلوس، وصح، الكريبتو ولى في الواجهة. المقال الجديد يتحدث عن "Who's Getting Rich Off The $100 Billion Crypto Treasury Boom" ويفضح بعض الأسماء اللي كاينة ورا هاد البوم. يعني، هناك أكثر من 100 مليار دولار راهم يتنقلوا، وفيه ناس تحوس على الطرقات اللي تضمنلهم الربح. صراحة، هذا الموضوع يخليني نفكر في كيفاش نقدروا نستغلو الفرص اللي كاينة في السوق، ولكن لازم نكونوا واعيين بالمخاطر اللي فيها. فكروا شوية في مستقبلكم المالي، ماشي كل شي ذهب، لكن كاين فرص و لازم نعرفو كيفاش نستغلوها. https://forbesmiddleeast.com/money/cryptography-and-blockchain/whos-getting-rich-off-the-$100-billion-crypto-treasury-boom-1 #كريبتو #فرص #استثمار #تكنولوجيا #مال
    forbesmiddleeast.com
    Who’s Getting Rich Off The $100 Billion Crypto Treasury Boom
    Like
    Love
    Wow
    Sad
    Angry
    734
    · 1 التعليقات ·0 المشاركات
الصفحات المعززة
ollo https://www.ollo.ws