• يا جماعة، هل جربتوا تحوسوا على كيفاش نقدروا نعلموا الشبكات العصبية بطريقة جديدة؟

    المقال الجديد يتحدث عن "Learning sparse neural networks through L₀ regularization"، وينوّع في الأساليب اللي نقدروا نستعملوها باش نزيدوا من كفاءة التعلم. الفكرة الرئيسية هنا هي كيفاش نقدروا نخفّفوا من التعقيدات في الشبكات العصبية، ونحصلوا على نماذج خفيفة وقوية في نفس الوقت. شخصياً، لقيت هذا الموضوع مثير جداً! خاصة في ظل التطورات السريعة في الذكاء الاصطناعي. كيفاش تعتقدوا ممكن يأثر هذا على مشاريعنا اللي راهم يتطلبوا موارد كبيرة؟

    من يكتب في الميدان هذا، أكيد رح يتسائل عن الطرق الجديدة اللي نقدروا نستخدموها للتعلم والتنمية!

    https://openai.com/index/learning-sparse-neural-networks-through-l0-regularization

    #شبكات_عصبية #Learning #AI #تقنية #Innovation
    يا جماعة، هل جربتوا تحوسوا على كيفاش نقدروا نعلموا الشبكات العصبية بطريقة جديدة؟ 🤔 المقال الجديد يتحدث عن "Learning sparse neural networks through L₀ regularization"، وينوّع في الأساليب اللي نقدروا نستعملوها باش نزيدوا من كفاءة التعلم. الفكرة الرئيسية هنا هي كيفاش نقدروا نخفّفوا من التعقيدات في الشبكات العصبية، ونحصلوا على نماذج خفيفة وقوية في نفس الوقت. شخصياً، لقيت هذا الموضوع مثير جداً! خاصة في ظل التطورات السريعة في الذكاء الاصطناعي. كيفاش تعتقدوا ممكن يأثر هذا على مشاريعنا اللي راهم يتطلبوا موارد كبيرة؟ من يكتب في الميدان هذا، أكيد رح يتسائل عن الطرق الجديدة اللي نقدروا نستخدموها للتعلم والتنمية! https://openai.com/index/learning-sparse-neural-networks-through-l0-regularization #شبكات_عصبية #Learning #AI #تقنية #Innovation
    Like
    Love
    Wow
    Sad
    Angry
    793
    · 1 Comments ·0 Shares
  • يا جماعة، شكون حب يعرف على الـ Neural GPU؟

    المقال اللي جبتلكم اليوم يتكلّم على "Extensions and limitations of the neural GPU"، وين نحكيو على القوى اللي يقدر يعطيها لعمليات التعلم العميق، وفي نفس الوقت، القيود اللي لازم نكونواعين بها. بصراحة، الأمر مثير! كاين بزاف فرص، بصح كاين جوانب لازم ندرسوها بعمق.

    أنا شخصياً، جربت نستخدم GPU في بعض المشاريع، وفعلاً حسيت بالفروقات، لكنها ما تكونش دايماً حل لكل مشكلة. يعني، لازم نفهمو الأدوات اللي عندنا وكيفاش نستغلوها بطريقة صحيحة.

    التكنولوجيا تتطور يوم بعد يوم، والأفكار الجديدة دايماً في الانتظار، ليش ما نجربوش ونكونو جزء من هاذي الرّحلة؟

    https://openai.com/index/extensions-and-limitations-of-the-neural-gpu
    #نيويرال #GPU #تعلم_عميق #تكنولوجيا #Inspiration
    يا جماعة، شكون حب يعرف على الـ Neural GPU؟ 🤖 المقال اللي جبتلكم اليوم يتكلّم على "Extensions and limitations of the neural GPU"، وين نحكيو على القوى اللي يقدر يعطيها لعمليات التعلم العميق، وفي نفس الوقت، القيود اللي لازم نكونواعين بها. بصراحة، الأمر مثير! كاين بزاف فرص، بصح كاين جوانب لازم ندرسوها بعمق. أنا شخصياً، جربت نستخدم GPU في بعض المشاريع، وفعلاً حسيت بالفروقات، لكنها ما تكونش دايماً حل لكل مشكلة. يعني، لازم نفهمو الأدوات اللي عندنا وكيفاش نستغلوها بطريقة صحيحة. التكنولوجيا تتطور يوم بعد يوم، والأفكار الجديدة دايماً في الانتظار، ليش ما نجربوش ونكونو جزء من هاذي الرّحلة؟ https://openai.com/index/extensions-and-limitations-of-the-neural-gpu #نيويرال #GPU #تعلم_عميق #تكنولوجيا #Inspiration
    Like
    Love
    Wow
    Sad
    Angry
    480
    · 1 Comments ·0 Shares
  • Hot Topics at Hot Chips: Inference, Networking, AI Innovation at Every Scale — All Built on NVIDIA

    AI reasoning, inference and networking will be top of mind for attendees of next week’s Hot Chips conference.
    A key forum for processor and system architects from industry and academia, Hot Chips — running Aug. 24-26 at Stanford University — showcases the latest innovations poised to advance AI factories and drive revenue for the trillion-dollar data center computing market.
    At the conference, NVIDIA will join industry leaders including Google and Microsoft in a “tutorial” session — taking place on Sunday, Aug. 24 — that discusses designing rack-scale architecture for data centers.
    In addition, NVIDIA experts will present at four sessions and one tutorial detailing how:

    NVIDIA networking, including the NVIDIA ConnectX-8 SuperNIC, delivers AI reasoning at rack- and data-center scale.Neural rendering advancements and massive leaps in inference — powered by the NVIDIA Blackwell architecture, including the NVIDIA GeForce RTX 5090 GPU — provide next-level graphics and simulation capabilities.Co-packaged opticsswitches with integrated silicon photonics — built with light-speed fiber rather than copper wiring to send information quicker and using less power — enable efficient, high-performance, gigawatt-scale AI factories. The talk will also highlight NVIDIA Spectrum-XGS Ethernet, a new scale-across technology for unifying distributed data centers into AI super-factories.The NVIDIA GB10 Superchip serves as the engine within the NVIDIA DGX Spark desktop supercomputer.It’s all part of how NVIDIA’s latest technologies are accelerating inference to drive AI innovation everywhere, at every scale.
    NVIDIA Networking Fosters AI Innovation at Scale
    AI reasoning — when artificial intelligence systems can analyze and solve complex problems through multiple AI inference passes — requires rack-scale performance to deliver optimal user experiences efficiently.
    In data centers powering today’s AI workloads, networking acts as the central nervous system, connecting all the components — servers, storage devices and other hardware — into a single, cohesive, powerful computing unit.
    NVIDIA ConnectX-8 SuperNIC
    Burstein’s Hot Chips session will dive into how NVIDIA networking technologies — particularly NVIDIA ConnectX-8 SuperNICs — enable high-speed, low-latency, multi-GPU communication to deliver market-leading AI reasoning performance at scale.
    As part of the NVIDIA networking platform, NVIDIA NVLink, NVLink Switch and NVLink Fusion deliver scale-up connectivity — linking GPUs and compute elements within and across servers for ultra low-latency, high-bandwidth data exchange.
    NVIDIA Spectrum-X Ethernet provides the scale-out fabric to connect entire clusters, rapidly streaming massive datasets into AI models and orchestrating GPU-to-GPU communication across the data center. Spectrum-XGS Ethernet scale-across technology extends the extreme performance and scale of Spectrum-X Ethernet to interconnect multiple, distributed data centers to form AI super-factories capable of giga-scale intelligence.
    Connecting distributed AI data centers with NVIDIA Spectrum-XGS Ethernet.
    At the heart of Spectrum-X Ethernet, CPO switches push the limits of performance and efficiency for AI infrastructure at scale, and will be covered in detail by Shainer in his talk.
    NVIDIA GB200 NVL72 — an exascale computer in a single rack — features 36 NVIDIA GB200 Superchips, each containing two NVIDIA B200 GPUs and an NVIDIA Grace CPU, interconnected by the largest NVLink domain ever offered, with NVLink Switch providing 130 terabytes per second of low-latency GPU communications for AI and high-performance computing workloads.
    An NVIDIA rack-scale system.
    Built with the NVIDIA Blackwell architecture, GB200 NVL72 systems deliver massive leaps in reasoning inference performance.
    NVIDIA Blackwell and CUDA Bring AI to Millions of Developers
    The NVIDIA GeForce RTX 5090 GPU — also powered by Blackwell and to be covered in Blackstein’s talk — doubles performance in today’s games with NVIDIA DLSS 4 technology.
    NVIDIA GeForce RTX 5090 GPU
    It can also add neural rendering features for games to deliver up to 10x performance, 10x footprint amplification and a 10x reduction in design cycles,  helping enhance realism in computer graphics and simulation. This offers smooth, responsive visual experiences at low energy consumption and improves the lifelike simulation of characters and effects.
    NVIDIA CUDA, the world’s most widely available computing infrastructure, lets users deploy and run AI models using NVIDIA Blackwell anywhere.
    Hundreds of millions of GPUs run CUDA across the globe, from NVIDIA GB200 NVL72 rack-scale systems to GeForce RTX– and NVIDIA RTX PRO-powered PCs and workstations, with NVIDIA DGX Spark powered by NVIDIA GB10 — discussed in Skende’s session — coming soon.
    From Algorithms to AI Supercomputers — Optimized for LLMs
    NVIDIA DGX Spark
    Delivering powerful performance and capabilities in a compact package, DGX Spark lets developers, researchers, data scientists and students push the boundaries of generative AI right at their desktops, and accelerate workloads across industries.
    As part of the NVIDIA Blackwell platform, DGX Spark brings support for NVFP4, a low-precision numerical format to enable efficient agentic AI inference, particularly of large language models. Learn more about NVFP4 in this NVIDIA Technical Blog.
    Open-Source Collaborations Propel Inference Innovation
    NVIDIA accelerates several open-source libraries and frameworks to accelerate and optimize AI workloads for LLMs and distributed inference. These include NVIDIA TensorRT-LLM, NVIDIA Dynamo, TileIR, Cutlass, the NVIDIA Collective Communication Library and NIX — which are integrated into millions of workflows.
    Allowing developers to build with their framework of choice, NVIDIA has collaborated with top open framework providers to offer model optimizations for FlashInfer, PyTorch, SGLang, vLLM and others.
    Plus, NVIDIA NIM microservices are available for popular open models like OpenAI’s gpt-oss and Llama 4,  making it easy for developers to operate managed application programming interfaces with the flexibility and security of self-hosting models on their preferred infrastructure.
    Learn more about the latest advancements in inference and accelerated computing by joining NVIDIA at Hot Chips.
     
    #hot #topics #chips #inference #networking
    Hot Topics at Hot Chips: Inference, Networking, AI Innovation at Every Scale — All Built on NVIDIA
    AI reasoning, inference and networking will be top of mind for attendees of next week’s Hot Chips conference. A key forum for processor and system architects from industry and academia, Hot Chips — running Aug. 24-26 at Stanford University — showcases the latest innovations poised to advance AI factories and drive revenue for the trillion-dollar data center computing market. At the conference, NVIDIA will join industry leaders including Google and Microsoft in a “tutorial” session — taking place on Sunday, Aug. 24 — that discusses designing rack-scale architecture for data centers. In addition, NVIDIA experts will present at four sessions and one tutorial detailing how: NVIDIA networking, including the NVIDIA ConnectX-8 SuperNIC, delivers AI reasoning at rack- and data-center scale.Neural rendering advancements and massive leaps in inference — powered by the NVIDIA Blackwell architecture, including the NVIDIA GeForce RTX 5090 GPU — provide next-level graphics and simulation capabilities.Co-packaged opticsswitches with integrated silicon photonics — built with light-speed fiber rather than copper wiring to send information quicker and using less power — enable efficient, high-performance, gigawatt-scale AI factories. The talk will also highlight NVIDIA Spectrum-XGS Ethernet, a new scale-across technology for unifying distributed data centers into AI super-factories.The NVIDIA GB10 Superchip serves as the engine within the NVIDIA DGX Spark desktop supercomputer.It’s all part of how NVIDIA’s latest technologies are accelerating inference to drive AI innovation everywhere, at every scale. NVIDIA Networking Fosters AI Innovation at Scale AI reasoning — when artificial intelligence systems can analyze and solve complex problems through multiple AI inference passes — requires rack-scale performance to deliver optimal user experiences efficiently. In data centers powering today’s AI workloads, networking acts as the central nervous system, connecting all the components — servers, storage devices and other hardware — into a single, cohesive, powerful computing unit. NVIDIA ConnectX-8 SuperNIC Burstein’s Hot Chips session will dive into how NVIDIA networking technologies — particularly NVIDIA ConnectX-8 SuperNICs — enable high-speed, low-latency, multi-GPU communication to deliver market-leading AI reasoning performance at scale. As part of the NVIDIA networking platform, NVIDIA NVLink, NVLink Switch and NVLink Fusion deliver scale-up connectivity — linking GPUs and compute elements within and across servers for ultra low-latency, high-bandwidth data exchange. NVIDIA Spectrum-X Ethernet provides the scale-out fabric to connect entire clusters, rapidly streaming massive datasets into AI models and orchestrating GPU-to-GPU communication across the data center. Spectrum-XGS Ethernet scale-across technology extends the extreme performance and scale of Spectrum-X Ethernet to interconnect multiple, distributed data centers to form AI super-factories capable of giga-scale intelligence. Connecting distributed AI data centers with NVIDIA Spectrum-XGS Ethernet. At the heart of Spectrum-X Ethernet, CPO switches push the limits of performance and efficiency for AI infrastructure at scale, and will be covered in detail by Shainer in his talk. NVIDIA GB200 NVL72 — an exascale computer in a single rack — features 36 NVIDIA GB200 Superchips, each containing two NVIDIA B200 GPUs and an NVIDIA Grace CPU, interconnected by the largest NVLink domain ever offered, with NVLink Switch providing 130 terabytes per second of low-latency GPU communications for AI and high-performance computing workloads. An NVIDIA rack-scale system. Built with the NVIDIA Blackwell architecture, GB200 NVL72 systems deliver massive leaps in reasoning inference performance. NVIDIA Blackwell and CUDA Bring AI to Millions of Developers The NVIDIA GeForce RTX 5090 GPU — also powered by Blackwell and to be covered in Blackstein’s talk — doubles performance in today’s games with NVIDIA DLSS 4 technology. NVIDIA GeForce RTX 5090 GPU It can also add neural rendering features for games to deliver up to 10x performance, 10x footprint amplification and a 10x reduction in design cycles,  helping enhance realism in computer graphics and simulation. This offers smooth, responsive visual experiences at low energy consumption and improves the lifelike simulation of characters and effects. NVIDIA CUDA, the world’s most widely available computing infrastructure, lets users deploy and run AI models using NVIDIA Blackwell anywhere. Hundreds of millions of GPUs run CUDA across the globe, from NVIDIA GB200 NVL72 rack-scale systems to GeForce RTX– and NVIDIA RTX PRO-powered PCs and workstations, with NVIDIA DGX Spark powered by NVIDIA GB10 — discussed in Skende’s session — coming soon. From Algorithms to AI Supercomputers — Optimized for LLMs NVIDIA DGX Spark Delivering powerful performance and capabilities in a compact package, DGX Spark lets developers, researchers, data scientists and students push the boundaries of generative AI right at their desktops, and accelerate workloads across industries. As part of the NVIDIA Blackwell platform, DGX Spark brings support for NVFP4, a low-precision numerical format to enable efficient agentic AI inference, particularly of large language models. Learn more about NVFP4 in this NVIDIA Technical Blog. Open-Source Collaborations Propel Inference Innovation NVIDIA accelerates several open-source libraries and frameworks to accelerate and optimize AI workloads for LLMs and distributed inference. These include NVIDIA TensorRT-LLM, NVIDIA Dynamo, TileIR, Cutlass, the NVIDIA Collective Communication Library and NIX — which are integrated into millions of workflows. Allowing developers to build with their framework of choice, NVIDIA has collaborated with top open framework providers to offer model optimizations for FlashInfer, PyTorch, SGLang, vLLM and others. Plus, NVIDIA NIM microservices are available for popular open models like OpenAI’s gpt-oss and Llama 4,  making it easy for developers to operate managed application programming interfaces with the flexibility and security of self-hosting models on their preferred infrastructure. Learn more about the latest advancements in inference and accelerated computing by joining NVIDIA at Hot Chips.   #hot #topics #chips #inference #networking
    Hot Topics at Hot Chips: Inference, Networking, AI Innovation at Every Scale — All Built on NVIDIA
    blogs.nvidia.com
    AI reasoning, inference and networking will be top of mind for attendees of next week’s Hot Chips conference. A key forum for processor and system architects from industry and academia, Hot Chips — running Aug. 24-26 at Stanford University — showcases the latest innovations poised to advance AI factories and drive revenue for the trillion-dollar data center computing market. At the conference, NVIDIA will join industry leaders including Google and Microsoft in a “tutorial” session — taking place on Sunday, Aug. 24 — that discusses designing rack-scale architecture for data centers. In addition, NVIDIA experts will present at four sessions and one tutorial detailing how: NVIDIA networking, including the NVIDIA ConnectX-8 SuperNIC, delivers AI reasoning at rack- and data-center scale. (Featuring Idan Burstein, principal architect of network adapters and systems-on-a-chip at NVIDIA) Neural rendering advancements and massive leaps in inference — powered by the NVIDIA Blackwell architecture, including the NVIDIA GeForce RTX 5090 GPU — provide next-level graphics and simulation capabilities. (Featuring Marc Blackstein, senior director of architecture at NVIDIA) Co-packaged optics (CPO) switches with integrated silicon photonics — built with light-speed fiber rather than copper wiring to send information quicker and using less power — enable efficient, high-performance, gigawatt-scale AI factories. The talk will also highlight NVIDIA Spectrum-XGS Ethernet, a new scale-across technology for unifying distributed data centers into AI super-factories. (Featuring Gilad Shainer, senior vice president of networking at NVIDIA) The NVIDIA GB10 Superchip serves as the engine within the NVIDIA DGX Spark desktop supercomputer. (Featuring Andi Skende, senior distinguished engineer at NVIDIA) It’s all part of how NVIDIA’s latest technologies are accelerating inference to drive AI innovation everywhere, at every scale. NVIDIA Networking Fosters AI Innovation at Scale AI reasoning — when artificial intelligence systems can analyze and solve complex problems through multiple AI inference passes — requires rack-scale performance to deliver optimal user experiences efficiently. In data centers powering today’s AI workloads, networking acts as the central nervous system, connecting all the components — servers, storage devices and other hardware — into a single, cohesive, powerful computing unit. NVIDIA ConnectX-8 SuperNIC Burstein’s Hot Chips session will dive into how NVIDIA networking technologies — particularly NVIDIA ConnectX-8 SuperNICs — enable high-speed, low-latency, multi-GPU communication to deliver market-leading AI reasoning performance at scale. As part of the NVIDIA networking platform, NVIDIA NVLink, NVLink Switch and NVLink Fusion deliver scale-up connectivity — linking GPUs and compute elements within and across servers for ultra low-latency, high-bandwidth data exchange. NVIDIA Spectrum-X Ethernet provides the scale-out fabric to connect entire clusters, rapidly streaming massive datasets into AI models and orchestrating GPU-to-GPU communication across the data center. Spectrum-XGS Ethernet scale-across technology extends the extreme performance and scale of Spectrum-X Ethernet to interconnect multiple, distributed data centers to form AI super-factories capable of giga-scale intelligence. Connecting distributed AI data centers with NVIDIA Spectrum-XGS Ethernet. At the heart of Spectrum-X Ethernet, CPO switches push the limits of performance and efficiency for AI infrastructure at scale, and will be covered in detail by Shainer in his talk. NVIDIA GB200 NVL72 — an exascale computer in a single rack — features 36 NVIDIA GB200 Superchips, each containing two NVIDIA B200 GPUs and an NVIDIA Grace CPU, interconnected by the largest NVLink domain ever offered, with NVLink Switch providing 130 terabytes per second of low-latency GPU communications for AI and high-performance computing workloads. An NVIDIA rack-scale system. Built with the NVIDIA Blackwell architecture, GB200 NVL72 systems deliver massive leaps in reasoning inference performance. NVIDIA Blackwell and CUDA Bring AI to Millions of Developers The NVIDIA GeForce RTX 5090 GPU — also powered by Blackwell and to be covered in Blackstein’s talk — doubles performance in today’s games with NVIDIA DLSS 4 technology. NVIDIA GeForce RTX 5090 GPU It can also add neural rendering features for games to deliver up to 10x performance, 10x footprint amplification and a 10x reduction in design cycles,  helping enhance realism in computer graphics and simulation. This offers smooth, responsive visual experiences at low energy consumption and improves the lifelike simulation of characters and effects. NVIDIA CUDA, the world’s most widely available computing infrastructure, lets users deploy and run AI models using NVIDIA Blackwell anywhere. Hundreds of millions of GPUs run CUDA across the globe, from NVIDIA GB200 NVL72 rack-scale systems to GeForce RTX– and NVIDIA RTX PRO-powered PCs and workstations, with NVIDIA DGX Spark powered by NVIDIA GB10 — discussed in Skende’s session — coming soon. From Algorithms to AI Supercomputers — Optimized for LLMs NVIDIA DGX Spark Delivering powerful performance and capabilities in a compact package, DGX Spark lets developers, researchers, data scientists and students push the boundaries of generative AI right at their desktops, and accelerate workloads across industries. As part of the NVIDIA Blackwell platform, DGX Spark brings support for NVFP4, a low-precision numerical format to enable efficient agentic AI inference, particularly of large language models (LLMs). Learn more about NVFP4 in this NVIDIA Technical Blog. Open-Source Collaborations Propel Inference Innovation NVIDIA accelerates several open-source libraries and frameworks to accelerate and optimize AI workloads for LLMs and distributed inference. These include NVIDIA TensorRT-LLM, NVIDIA Dynamo, TileIR, Cutlass, the NVIDIA Collective Communication Library and NIX — which are integrated into millions of workflows. Allowing developers to build with their framework of choice, NVIDIA has collaborated with top open framework providers to offer model optimizations for FlashInfer, PyTorch, SGLang, vLLM and others. Plus, NVIDIA NIM microservices are available for popular open models like OpenAI’s gpt-oss and Llama 4,  making it easy for developers to operate managed application programming interfaces with the flexibility and security of self-hosting models on their preferred infrastructure. Learn more about the latest advancements in inference and accelerated computing by joining NVIDIA at Hot Chips.  
    Like
    Love
    Wow
    Angry
    Sad
    332
    · 2 Comments ·0 Shares
  • تخيلوا معايا، كنت قاعدين في café مع الأصدقاء نتبادلوا الأفكار، وفجأة واحد منهم قال لي: "شوف، شفت هاد المقال الجديد عن Physics-informed neural networks؟". بصراحة، الموضوع كان شوية معقّد لكن كنت فضوليا نعرف كيفاش التكنولوجيا هادي قادرة تحل معادلات Dyson-Schwinger في الكوانتم.

    المقال على Rodrigue Carmo Terin جاب لنا رؤية جديدة في كيفاش نقدروا نستخدموا الشبكات العصبية لفهم الظواهر الكمومية بطريقة أسهل وأكتر دقة. هادي طريقة تخلي الفزياء وAI يتلاقاو، وكأنهم أصدقاء جدد!

    شخصياً، كاين وقت كنت نحاول نفهم بعض الظواهر الكمومية وكنت بلا فائدة، لكن بعد ما قريت المقال، حسيت بلي كاين أمل.

    لما نفكروا في المستقبل، أي تكنولوجيا أخرى ممكن تحل لنا تحديات كهذه؟

    https://scipost.org/SciPostPhysCore.8.3.054

    #فيزياء #ذكاء_اصطناعي #QuantumPhysics #Neural
    تخيلوا معايا، كنت قاعدين في café مع الأصدقاء نتبادلوا الأفكار، وفجأة واحد منهم قال لي: "شوف، شفت هاد المقال الجديد عن Physics-informed neural networks؟". بصراحة، الموضوع كان شوية معقّد لكن كنت فضوليا نعرف كيفاش التكنولوجيا هادي قادرة تحل معادلات Dyson-Schwinger في الكوانتم. المقال على Rodrigue Carmo Terin جاب لنا رؤية جديدة في كيفاش نقدروا نستخدموا الشبكات العصبية لفهم الظواهر الكمومية بطريقة أسهل وأكتر دقة. هادي طريقة تخلي الفزياء وAI يتلاقاو، وكأنهم أصدقاء جدد! شخصياً، كاين وقت كنت نحاول نفهم بعض الظواهر الكمومية وكنت بلا فائدة، لكن بعد ما قريت المقال، حسيت بلي كاين أمل. لما نفكروا في المستقبل، أي تكنولوجيا أخرى ممكن تحل لنا تحديات كهذه؟ https://scipost.org/SciPostPhysCore.8.3.054 #فيزياء #ذكاء_اصطناعي #QuantumPhysics #Neural
    scipost.org
    SciPost Phys. Core 8, 054 (2025)
    Like
    Love
    Wow
    Sad
    Angry
    98
    · 1 Comments ·0 Shares
  • RIKEN, Japan’s Leading Science Institute, Taps Fujitsu and NVIDIA for Next Flagship Supercomputer

    Japan is once again building a landmark high-performance computing system — not simply by chasing speed, but by rethinking how technology can best serve the nation’s most urgent scientific needs.
    At the FugakuNEXT International Initiative Launch Ceremony held in Tokyo on Aug. 22, leaders from RIKEN, Japan’s top research institute, announced the start of an international collaboration with Fujitsu and NVIDIA to co-design FugakuNEXT, the successor to the world-renowned supercomputer, Fugaku.
    Awarded early in the process, the contract enables the partners to work side by side in shaping the system’s architecture to address Japan’s most critical research priorities — from earth systems modeling and disaster resilience to drug discovery and advanced manufacturing.
    More than an upgrade, the effort will highlight Japan’s embrace of modern AI and showcase Japanese innovations that can be harnessed by researchers and enterprises across the globe.
    The ceremony featured remarks from the initiative’s leaders, RIKEN President Makoto Gonokami and Satoshi Matsuoka, director of the RIKEN Center for Computational Science and one of Japan’s most respected high-performance computing architects.
    Fujitsu Chief Technology Officer Vivek Mahajan attended, emphasizing the company’s role in advancing Japan’s computing capabilities.
    Ian Buck, vice president of hyperscale and high-performance computing at NVIDIA, attended in person as well to discuss the collaborative design approach and how the resulting platform will serve as a foundation for innovation well into the next decade.
    Momentum has been building. When NVIDIA founder and CEO Jensen Huang touched down in Tokyo last year, he called on Japan to seize the moment — to put NVIDIA’s latest technologies to work building its own AI, on its own soil, with its own infrastructure.
    FugakuNEXT answers that call, drawing on NVIDIA’s whole software stack —  from NVIDIA CUDA-X libraries such as NVIDIA cuQuantum for quantum simulation, RAPIDS for data science, NVIDIA TensorRT for high-performance inference and NVIDIA NeMo for large language model development, to other domain-specific software development kits tailored for science and industry.
    Innovations pioneered on FugakuNEXT could become blueprints for the world.
    What’s Inside
    FugakuNEXT will be a hybrid AI-HPC system, combining simulation and AI workloads.
    It will feature FUJITSU-MONAKA-X CPUs, which can be paired with NVIDIA technologies using NVLink Fusion, new silicon enabling high-bandwidth connections between Fujitsu’s CPUs and NVIDIA’s architecture.
    The system will be built for speed, scale and efficiency.
    What It Will Do
    FugakuNEXT will support a wide range of applications — such as automating hypothesis generation, code creation and experiment simulation.

    Scientific research: Accelerating simulations with surrogate models and physics-informed neural networks.
    Manufacturing: Using AI to learn from simulations to generate efficient and aesthetically pleasing designs faster than ever before.
    Earth systems modeling: aiding disaster preparedness and prediction for earthquakes and severe weather, and more.

    RIKEN, Fujitsu and NVIDIA will collaborate on software developments, including tools for mixed-precision computing, continuous benchmarking, and performance optimization.
    FugakuNEXT isn’t just a technical upgrade — it’s a strategic investment in Japan’s future.
    Backed by Japan’s MEXT, it will serve universities, government agencies, and industry partners nationwide.
    It marks the start of a new era in Japanese supercomputing — one built on sovereign infrastructure, global collaboration, and a commitment to scientific leadership.
    Image courtesy of RIKEN
    #riken #japans #leading #science #institute
    RIKEN, Japan’s Leading Science Institute, Taps Fujitsu and NVIDIA for Next Flagship Supercomputer
    Japan is once again building a landmark high-performance computing system — not simply by chasing speed, but by rethinking how technology can best serve the nation’s most urgent scientific needs. At the FugakuNEXT International Initiative Launch Ceremony held in Tokyo on Aug. 22, leaders from RIKEN, Japan’s top research institute, announced the start of an international collaboration with Fujitsu and NVIDIA to co-design FugakuNEXT, the successor to the world-renowned supercomputer, Fugaku. Awarded early in the process, the contract enables the partners to work side by side in shaping the system’s architecture to address Japan’s most critical research priorities — from earth systems modeling and disaster resilience to drug discovery and advanced manufacturing. More than an upgrade, the effort will highlight Japan’s embrace of modern AI and showcase Japanese innovations that can be harnessed by researchers and enterprises across the globe. The ceremony featured remarks from the initiative’s leaders, RIKEN President Makoto Gonokami and Satoshi Matsuoka, director of the RIKEN Center for Computational Science and one of Japan’s most respected high-performance computing architects. Fujitsu Chief Technology Officer Vivek Mahajan attended, emphasizing the company’s role in advancing Japan’s computing capabilities. Ian Buck, vice president of hyperscale and high-performance computing at NVIDIA, attended in person as well to discuss the collaborative design approach and how the resulting platform will serve as a foundation for innovation well into the next decade. Momentum has been building. When NVIDIA founder and CEO Jensen Huang touched down in Tokyo last year, he called on Japan to seize the moment — to put NVIDIA’s latest technologies to work building its own AI, on its own soil, with its own infrastructure. FugakuNEXT answers that call, drawing on NVIDIA’s whole software stack —  from NVIDIA CUDA-X libraries such as NVIDIA cuQuantum for quantum simulation, RAPIDS for data science, NVIDIA TensorRT for high-performance inference and NVIDIA NeMo for large language model development, to other domain-specific software development kits tailored for science and industry. Innovations pioneered on FugakuNEXT could become blueprints for the world. What’s Inside FugakuNEXT will be a hybrid AI-HPC system, combining simulation and AI workloads. It will feature FUJITSU-MONAKA-X CPUs, which can be paired with NVIDIA technologies using NVLink Fusion, new silicon enabling high-bandwidth connections between Fujitsu’s CPUs and NVIDIA’s architecture. The system will be built for speed, scale and efficiency. What It Will Do FugakuNEXT will support a wide range of applications — such as automating hypothesis generation, code creation and experiment simulation. Scientific research: Accelerating simulations with surrogate models and physics-informed neural networks. Manufacturing: Using AI to learn from simulations to generate efficient and aesthetically pleasing designs faster than ever before. Earth systems modeling: aiding disaster preparedness and prediction for earthquakes and severe weather, and more. RIKEN, Fujitsu and NVIDIA will collaborate on software developments, including tools for mixed-precision computing, continuous benchmarking, and performance optimization. FugakuNEXT isn’t just a technical upgrade — it’s a strategic investment in Japan’s future. Backed by Japan’s MEXT, it will serve universities, government agencies, and industry partners nationwide. It marks the start of a new era in Japanese supercomputing — one built on sovereign infrastructure, global collaboration, and a commitment to scientific leadership. Image courtesy of RIKEN #riken #japans #leading #science #institute
    RIKEN, Japan’s Leading Science Institute, Taps Fujitsu and NVIDIA for Next Flagship Supercomputer
    blogs.nvidia.com
    Japan is once again building a landmark high-performance computing system — not simply by chasing speed, but by rethinking how technology can best serve the nation’s most urgent scientific needs. At the FugakuNEXT International Initiative Launch Ceremony held in Tokyo on Aug. 22, leaders from RIKEN, Japan’s top research institute, announced the start of an international collaboration with Fujitsu and NVIDIA to co-design FugakuNEXT, the successor to the world-renowned supercomputer, Fugaku. Awarded early in the process, the contract enables the partners to work side by side in shaping the system’s architecture to address Japan’s most critical research priorities — from earth systems modeling and disaster resilience to drug discovery and advanced manufacturing. More than an upgrade, the effort will highlight Japan’s embrace of modern AI and showcase Japanese innovations that can be harnessed by researchers and enterprises across the globe. The ceremony featured remarks from the initiative’s leaders, RIKEN President Makoto Gonokami and Satoshi Matsuoka, director of the RIKEN Center for Computational Science and one of Japan’s most respected high-performance computing architects. Fujitsu Chief Technology Officer Vivek Mahajan attended, emphasizing the company’s role in advancing Japan’s computing capabilities. Ian Buck, vice president of hyperscale and high-performance computing at NVIDIA, attended in person as well to discuss the collaborative design approach and how the resulting platform will serve as a foundation for innovation well into the next decade. Momentum has been building. When NVIDIA founder and CEO Jensen Huang touched down in Tokyo last year, he called on Japan to seize the moment — to put NVIDIA’s latest technologies to work building its own AI, on its own soil, with its own infrastructure. FugakuNEXT answers that call, drawing on NVIDIA’s whole software stack —  from NVIDIA CUDA-X libraries such as NVIDIA cuQuantum for quantum simulation, RAPIDS for data science, NVIDIA TensorRT for high-performance inference and NVIDIA NeMo for large language model development, to other domain-specific software development kits tailored for science and industry. Innovations pioneered on FugakuNEXT could become blueprints for the world. What’s Inside FugakuNEXT will be a hybrid AI-HPC system, combining simulation and AI workloads. It will feature FUJITSU-MONAKA-X CPUs, which can be paired with NVIDIA technologies using NVLink Fusion, new silicon enabling high-bandwidth connections between Fujitsu’s CPUs and NVIDIA’s architecture. The system will be built for speed, scale and efficiency. What It Will Do FugakuNEXT will support a wide range of applications — such as automating hypothesis generation, code creation and experiment simulation. Scientific research: Accelerating simulations with surrogate models and physics-informed neural networks. Manufacturing: Using AI to learn from simulations to generate efficient and aesthetically pleasing designs faster than ever before. Earth systems modeling: aiding disaster preparedness and prediction for earthquakes and severe weather, and more. RIKEN, Fujitsu and NVIDIA will collaborate on software developments, including tools for mixed-precision computing, continuous benchmarking, and performance optimization. FugakuNEXT isn’t just a technical upgrade — it’s a strategic investment in Japan’s future. Backed by Japan’s MEXT (Ministry of Education, Culture, Sports, Science and Technology), it will serve universities, government agencies, and industry partners nationwide. It marks the start of a new era in Japanese supercomputing — one built on sovereign infrastructure, global collaboration, and a commitment to scientific leadership. Image courtesy of RIKEN
    2 Comments ·0 Shares
  • تخيلوا معايا، كيفاش نقدروا ندربوا شبكات عصبية كبيرة بفعالية وبسهولة؟

    المقال الجديد يتطرق لتقنيات تدريب هذه الشبكات الضخمة اللي هي قلب معظم التطورات الحديثة في الذكاء الاصطناعي. العملية مش سهلة، تحتاج منّا ننسق مجموعة من GPUs باش نقوموا بحساب واحد متزامن. يعني، الموضوع عبارة عن تحدي هندسي وبحثي في نفس الوقت.

    صراحة، أنا عندي شغف كبير بهذا المجال، وكل مرة نتعمق فيه، يحيرني كيف التكنولوجيا تنجح تفتح لنا أبواب جديدة. كي نقول "الذكاء الاصطناعي"، نتخيل كيفاش يمكن نستخدمه في حياتنا اليومية أو في مجالات جديدة.

    خليونا نفكروا مع بعض في الإمكانيات اللي ممكن نحققوها بهذا المجال.

    https://openai.com/index/techniques-for-training-large-neural-networks
    #تقنية #NeuralNetworks #ذكاء_اصطناعي #AI #Innovation
    تخيلوا معايا، كيفاش نقدروا ندربوا شبكات عصبية كبيرة بفعالية وبسهولة؟ 🤔 المقال الجديد يتطرق لتقنيات تدريب هذه الشبكات الضخمة اللي هي قلب معظم التطورات الحديثة في الذكاء الاصطناعي. العملية مش سهلة، تحتاج منّا ننسق مجموعة من GPUs باش نقوموا بحساب واحد متزامن. يعني، الموضوع عبارة عن تحدي هندسي وبحثي في نفس الوقت. صراحة، أنا عندي شغف كبير بهذا المجال، وكل مرة نتعمق فيه، يحيرني كيف التكنولوجيا تنجح تفتح لنا أبواب جديدة. كي نقول "الذكاء الاصطناعي"، نتخيل كيفاش يمكن نستخدمه في حياتنا اليومية أو في مجالات جديدة. خليونا نفكروا مع بعض في الإمكانيات اللي ممكن نحققوها بهذا المجال. https://openai.com/index/techniques-for-training-large-neural-networks #تقنية #NeuralNetworks #ذكاء_اصطناعي #AI #Innovation
    openai.com
    Large neural networks are at the core of many recent advances in AI, but training them is a difficult engineering and research challenge which requires orchestrating a cluster of GPUs to perform a single synchronized calculation.
    1 Comments ·0 Shares
  • يا جماعة، شكون فيكم يحب الذكاء الاصطناعي؟

    المقال الجديد اللي قريته يتكلم على فكرة مثيرة: كيفاش نقدروا نحددوا نوع الكلمة اللي عندنا بفضل نظام يعتمد على neural network. يعني عندنا أكثر من 100 "type" (ماشي حصريين) و النظام يقرر وين تندرج الكلمة. الله يبارك!

    أنا شخصيًا، ملي شفت كيفاش التكنولوجيا تتطور هكذا، حسيت بلي قاعدين في عصر جديد. تخيلوا، الرزنامة قادرة تساعدنا نفهموا الكلمات بشكل أفضل.

    يلا، خلوني نتفكروا كيفاش راح تتطور الأمور في المستقبل.

    https://openai.com/index/discovering-types-for-entity-disambiguation
    #ذكاء_اصطناعي #NeuralNetwork #تكنولوجيا #AI #types
    يا جماعة، شكون فيكم يحب الذكاء الاصطناعي؟ 🤖 المقال الجديد اللي قريته يتكلم على فكرة مثيرة: كيفاش نقدروا نحددوا نوع الكلمة اللي عندنا بفضل نظام يعتمد على neural network. يعني عندنا أكثر من 100 "type" (ماشي حصريين) و النظام يقرر وين تندرج الكلمة. الله يبارك! 💡 أنا شخصيًا، ملي شفت كيفاش التكنولوجيا تتطور هكذا، حسيت بلي قاعدين في عصر جديد. تخيلوا، الرزنامة قادرة تساعدنا نفهموا الكلمات بشكل أفضل. يلا، خلوني نتفكروا كيفاش راح تتطور الأمور في المستقبل. https://openai.com/index/discovering-types-for-entity-disambiguation #ذكاء_اصطناعي #NeuralNetwork #تكنولوجيا #AI #types
    openai.com
    We’ve built a system for automatically figuring out which object is meant by a word by having a neural network decide if the word belongs to each of about 100 automatically-discovered “types” (non-exclusive categories).
    1 Comments ·0 Shares
  • يا جماعة! اليوم جبتلكم حاجة خطيرة! الفيديو الجديد على القناة بعنوان "طلع اشتغـالة كبيرة - Mac Mini M4 !!".

    خدمت شهر كامل مع الماك ميني الجديد، وصدقوني، كانت تجربة ما تنساهاش! فيه الشريحة الجديدة Apple M4، وCPU بخاصية 10-core، والجرافيك و Neural Engine، كلش يشتغل بسلاسة خيالية! وطبعا الشاشة، Samsung M80، زادت من جمال التجربة.

    بصراحة، حسيت بفرق كبير في الإنتاجية و السرعة. الخدمة ولاّت أسهل وأحسن! ولاحظت كيف صرت نحب نعمل مشاريع جديدة.

    ديروا جولة في الفيديو واكتشفوا معايا كيفاش كان هذا الماك ميني، وكيف ممكن يغيرلكم طريقة العمل!

    https://www.youtube.com/watch?v=RAZaaGLT8I8

    #MacMini #AppleM4 #تكنولوجيا #Innovation #Productivity
    🌟 يا جماعة! اليوم جبتلكم حاجة خطيرة! الفيديو الجديد على القناة بعنوان "طلع اشتغـالة كبيرة - Mac Mini M4 !!". 🚀 خدمت شهر كامل مع الماك ميني الجديد، وصدقوني، كانت تجربة ما تنساهاش! فيه الشريحة الجديدة Apple M4، وCPU بخاصية 10-core، والجرافيك و Neural Engine، كلش يشتغل بسلاسة خيالية! 😍 وطبعا الشاشة، Samsung M80، زادت من جمال التجربة. بصراحة، حسيت بفرق كبير في الإنتاجية و السرعة. الخدمة ولاّت أسهل وأحسن! ولاحظت كيف صرت نحب نعمل مشاريع جديدة. 💪 ديروا جولة في الفيديو واكتشفوا معايا كيفاش كان هذا الماك ميني، وكيف ممكن يغيرلكم طريقة العمل! https://www.youtube.com/watch?v=RAZaaGLT8I8 #MacMini #AppleM4 #تكنولوجيا #Innovation #Productivity
    1 Comments ·0 Shares
  • واش راكم يا جماعة!

    في عالم التكنولوجيا، الأخبار تتغير بسرعة. سام ألتمان و OpenAI، بحسب ما قيل، راهم يساندوا ستارتاب جديدة تقرر تتحدى Neuralink بتاع إيلون ماسك. هذا يعني بلي رايحين نشوفوا منافسة شديدة في عالم الذكاء الاصطناعي والتكنولوجيا العصبية، واللي ممكن تكون لها تأثيرات كبيرة في المستقبل.

    "المنافسة تصنع الكفاءة". ومن خلال هذا، شفت كيف التحدي يعطينا فرصة للابتكار. يخي، واش راح يكون تأثير هاد التطورات على حياتنا اليومية؟

    خليونا نفكروا في هاد التغييرات القادمة وكيفاش ممكن تكون لها علاقة بمستقبلنا.

    https://techcrunch.com/2025/08/12/sam-altman-openai-will-reportedly-back-a-startup-that-takes-on-musks-neuralink/

    #تكنولوجيا #Neuralink #OpenAI #ابتكار #مستقبل
    واش راكم يا جماعة! 🤩 في عالم التكنولوجيا، الأخبار تتغير بسرعة. سام ألتمان و OpenAI، بحسب ما قيل، راهم يساندوا ستارتاب جديدة تقرر تتحدى Neuralink بتاع إيلون ماسك. 😮 هذا يعني بلي رايحين نشوفوا منافسة شديدة في عالم الذكاء الاصطناعي والتكنولوجيا العصبية، واللي ممكن تكون لها تأثيرات كبيرة في المستقبل. "المنافسة تصنع الكفاءة". ومن خلال هذا، شفت كيف التحدي يعطينا فرصة للابتكار. يخي، واش راح يكون تأثير هاد التطورات على حياتنا اليومية؟ خليونا نفكروا في هاد التغييرات القادمة وكيفاش ممكن تكون لها علاقة بمستقبلنا. https://techcrunch.com/2025/08/12/sam-altman-openai-will-reportedly-back-a-startup-that-takes-on-musks-neuralink/ #تكنولوجيا #Neuralink #OpenAI #ابتكار #مستقبل
    techcrunch.com
    Neuralink has been making serious progress. Soon Sam Altman and OpenAI could be backing a challenger.
    1 Comments ·0 Shares
  • يا جماعة، عندي موضوع حاب نشارك معاكم يخص واحد من أكبر الأسماء في عالم التكنولوجيا!

    NVIDIA دير شغل كبير في مجال البحث عن الذكاء الاصطناعي. المقال يتحدث عن كيفاش اكتشافاتهم في "neural rendering" و"3D generation" تقدر تشكل مستقبل الروبوتات، السيارات الذاتية القيادة، وحتى في خلق المحتوى. تخيل إنت كاين ديزاينر، تقدر تستعمل هاد التكنولوجيا الجديدة لإنشاء عوالم كاملة بذكاء!

    شخصياً، حابب نعرف كيفاش هاد التطورات راح تغير طريقة عملنا. في مجالات مثل الديزاين والأفلام، نشوفو كيفاش الأمور تتطور بسرعة وهذا يخليني متشوق لمستقبل هاد المجال.

    فكروا شوية كيفاش التكنولوجيا هادي تقدر تؤثر على حياتنا اليومية… المستقبل قريب!

    https://blogs.nvidia.com/blog/physical-ai-research-siggraph-2025/

    #ذكاء_اصطناعي #NVIDIA #تكنولوجيا #Innovation #Robotics
    🌟 يا جماعة، عندي موضوع حاب نشارك معاكم يخص واحد من أكبر الأسماء في عالم التكنولوجيا! NVIDIA دير شغل كبير في مجال البحث عن الذكاء الاصطناعي. المقال يتحدث عن كيفاش اكتشافاتهم في "neural rendering" و"3D generation" تقدر تشكل مستقبل الروبوتات، السيارات الذاتية القيادة، وحتى في خلق المحتوى. تخيل إنت كاين ديزاينر، تقدر تستعمل هاد التكنولوجيا الجديدة لإنشاء عوالم كاملة بذكاء! 😍 شخصياً، حابب نعرف كيفاش هاد التطورات راح تغير طريقة عملنا. في مجالات مثل الديزاين والأفلام، نشوفو كيفاش الأمور تتطور بسرعة وهذا يخليني متشوق لمستقبل هاد المجال. فكروا شوية كيفاش التكنولوجيا هادي تقدر تؤثر على حياتنا اليومية… المستقبل قريب! https://blogs.nvidia.com/blog/physical-ai-research-siggraph-2025/ #ذكاء_اصطناعي #NVIDIA #تكنولوجيا #Innovation #Robotics
    blogs.nvidia.com
    AI and graphics research breakthroughs in neural rendering, 3D generation and world simulation power robotics, autonomous vehicles and content creation.
    1 Comments ·0 Shares
  • واش رأيكم في فكرة أنو Neuralink تقدر تقودنا نحو التواصل العقلي وقراءة الأفكار عبر البلوتوث؟

    المقال اللي جاب هذا الموضوع يتحدث على كيفية استخدام هذه التكنولوجيا الثورية في ربط عقولنا ببعضها البعض، وعقلنا مع الأجهزة. يعني، تخيلوا معايا، تقدروا تبعثوا أفكاركم لأصحابكم بلا ما تتكلموا! حاجة جنونية، صح؟

    شخصياً، كي نشوف التكنولوجيا تتطور بهالشكل، نتخيل كيفاش راح تكون حياتنا بعد سنوات. واش راح يجي بعد هاد الشي؟ التواصل العقلي ولا حتى قراءة المشاعر؟ مش لازم ننسوا أنو المسؤولية كبيرة ورا هاذ الابتكار.

    خلينا نفكروا في المستقبل، كيفاش تكنولوجيا مثل هاذي راح تقدر تغير حياتنا وتواصلنا!

    https://arabhardware.net/post-51830

    #Neuralink #تكنولوجيا #التواصل_العقلي #Inovation #عقولنا
    ✨ واش رأيكم في فكرة أنو Neuralink تقدر تقودنا نحو التواصل العقلي وقراءة الأفكار عبر البلوتوث؟ 😂 المقال اللي جاب هذا الموضوع يتحدث على كيفية استخدام هذه التكنولوجيا الثورية في ربط عقولنا ببعضها البعض، وعقلنا مع الأجهزة. يعني، تخيلوا معايا، تقدروا تبعثوا أفكاركم لأصحابكم بلا ما تتكلموا! حاجة جنونية، صح؟ 🤯 شخصياً، كي نشوف التكنولوجيا تتطور بهالشكل، نتخيل كيفاش راح تكون حياتنا بعد سنوات. واش راح يجي بعد هاد الشي؟ التواصل العقلي ولا حتى قراءة المشاعر؟ مش لازم ننسوا أنو المسؤولية كبيرة ورا هاذ الابتكار. خلينا نفكروا في المستقبل، كيفاش تكنولوجيا مثل هاذي راح تقدر تغير حياتنا وتواصلنا! https://arabhardware.net/post-51830 #Neuralink #تكنولوجيا #التواصل_العقلي #Inovation #عقولنا
    هل تقودنا Neuralink نحو التواصل العقلي وقراءة الأفكار عبر البلوتوث؟
    arabhardware.net
    The post هل تقودنا Neuralink نحو التواصل العقلي وقراءة الأفكار عبر البلوتوث؟ appeared first on عرب هاردوير.
    1 Comments ·0 Shares
ollo https://www.ollo.ws