• يا جماعة، شكون فيكم يحب Elden Ring؟ اليوم كان المفروض يكون يوم كبير لمحبين اللعب، لكن للأسف تم تأجيل تحديث "Duo Expeditions" بسبب إنذار تسونامي في اليابان!

    بعد أشهر من الانتظار، FromSoftware كانت جاهزة تعلن عن الجديد، والكل كان متشوق يجرب "Duos". بصح، الحياة دائما تجيب المفاجآت، صحيح؟ كل واحد فينا مرّ بلحظات كيما هذي، وين تكون عندك خطط كبيرة ومن بعد يجي عائق غير متوقع.

    المهم، دعونا نبقى متفائلين وننتظر الجديد. كل تأخير هو فرصة جديدة لنستعد أكثر ونكون جاهزين لما يجي التحديث!

    تابعوا التفاصيل هنا:
    https://www.vg247.com/elden-ring-nightreign-duos-patch-delayed-fromsoftware-japan

    #EldenRing #GamingCommunity #FromSoftware #DuoExpeditions #التسلية
    يا جماعة، شكون فيكم يحب Elden Ring؟ 😍 اليوم كان المفروض يكون يوم كبير لمحبين اللعب، لكن للأسف تم تأجيل تحديث "Duo Expeditions" بسبب إنذار تسونامي في اليابان! 😱 بعد أشهر من الانتظار، FromSoftware كانت جاهزة تعلن عن الجديد، والكل كان متشوق يجرب "Duos". بصح، الحياة دائما تجيب المفاجآت، صحيح؟ كل واحد فينا مرّ بلحظات كيما هذي، وين تكون عندك خطط كبيرة ومن بعد يجي عائق غير متوقع. المهم، دعونا نبقى متفائلين وننتظر الجديد. كل تأخير هو فرصة جديدة لنستعد أكثر ونكون جاهزين لما يجي التحديث! تابعوا التفاصيل هنا: https://www.vg247.com/elden-ring-nightreign-duos-patch-delayed-fromsoftware-japan #EldenRing #GamingCommunity #FromSoftware #DuoExpeditions #التسلية
    Elden Ring Nightreign's big Duos patch delayed because of a tsunami warning in Japan
    www.vg247.com
    Today was supposed to be a big day for Elden Ring Nightreign players everywhere. After months of wait, FromSoftware finally confirmed that Duo Expeditions would be arriving with the game’s next update. Read more
    Like
    Love
    Wow
    Angry
    27
    · 1 التعليقات ·0 المشاركات
  • يا جماعة، اليوم حبيت نحكي لكم على موضوع يجنن!

    في طوكيو، المدينة اللي تعيش فيها الثقافة الحديثة والتقاليد القديمة، كاين مجموعة من المعماريين والمصممين اللي يشكلوا المستقبل بتصاميمهم الرائعة. المقال يتكلم عن "30 Best Architecture and Design Firms in Tokyo"، وين تكتشفوا كيفاش هذو المعماريين يبنوا مدينة الغد.

    شخصياً، دايماً نحب نكتشف الأفكار الجديدة في العمارة، وكل مرة نشوف تصميم مميز في طوكيو، نحس كأنني في عالم آخر. الخيال يقدر يخلق أشياء ما تخطرش على بالكم!

    فلازم نفكروا في كيفاش العمارة تقدر تغير حياتنا وتبني مستقبلنا.

    https://architizer.com/blog/inspiration/collections/best-architecture-firms-in-tokyo-japan/
    #معمارية #طوكيو #DesignThinking #ArchitectureLovers #InnovativeDesign
    يا جماعة، اليوم حبيت نحكي لكم على موضوع يجنن! 🚀 في طوكيو، المدينة اللي تعيش فيها الثقافة الحديثة والتقاليد القديمة، كاين مجموعة من المعماريين والمصممين اللي يشكلوا المستقبل بتصاميمهم الرائعة. المقال يتكلم عن "30 Best Architecture and Design Firms in Tokyo"، وين تكتشفوا كيفاش هذو المعماريين يبنوا مدينة الغد. 🌆 شخصياً، دايماً نحب نكتشف الأفكار الجديدة في العمارة، وكل مرة نشوف تصميم مميز في طوكيو، نحس كأنني في عالم آخر. الخيال يقدر يخلق أشياء ما تخطرش على بالكم! فلازم نفكروا في كيفاش العمارة تقدر تغير حياتنا وتبني مستقبلنا. https://architizer.com/blog/inspiration/collections/best-architecture-firms-in-tokyo-japan/ #معمارية #طوكيو #DesignThinking #ArchitectureLovers #InnovativeDesign
    architizer.com
    If Tokyo is a vibrant metropolis that acts as a gate to the future, then these architects are shaping the city of tomorrow. The post 30 Best Architecture and Design Firms in Tokyo appeared first on Journal.
    Like
    Love
    Wow
    Angry
    Sad
    236
    · 1 التعليقات ·0 المشاركات
  • يا جماعة، عندي خبر رائع على شكل "villa" في الجبال!

    شركة NOT A HOTEL بدأت تسوّق لفيلا جديدة فوق الجبل في منتجع تزلج ياباني، ومن المقرر تفتح أبوابها في ربيع 2029. هذي الفيلا هي الأكبر للشركة لحد الآن، وما يعيبها غير أنها في أروع موقع ممكن. تخيلوا المناظر والجو هناك!

    شخصيًا، أنا فرحان بزاف كيف العمارة الحديثة تتلاقى مع الطبيعة. كيعجبني كيف يستثمروا في الأماكن الطبيعية ويخلقوا تجارب فريدة من نوعها. راكم عارفين، الطبيعة عندها سحر خاص!

    يا ريت نقدروا نتلاقى في هذ الفيلا يوم من الأيام ونعيشوا اللحظة مع الأصدقاء.

    https://www.designboom.com/architecture/notahotel-sales-mountaintop-villa-snohetta-japanese-ski-resort-08-26-2025/

    #فيلا #جبال #تزلج #عمارة #NatureDesign
    يا جماعة، عندي خبر رائع على شكل "villa" في الجبال! ⛰️ شركة NOT A HOTEL بدأت تسوّق لفيلا جديدة فوق الجبل في منتجع تزلج ياباني، ومن المقرر تفتح أبوابها في ربيع 2029. هذي الفيلا هي الأكبر للشركة لحد الآن، وما يعيبها غير أنها في أروع موقع ممكن. تخيلوا المناظر والجو هناك! شخصيًا، أنا فرحان بزاف كيف العمارة الحديثة تتلاقى مع الطبيعة. كيعجبني كيف يستثمروا في الأماكن الطبيعية ويخلقوا تجارب فريدة من نوعها. راكم عارفين، الطبيعة عندها سحر خاص! يا ريت نقدروا نتلاقى في هذ الفيلا يوم من الأيام ونعيشوا اللحظة مع الأصدقاء. https://www.designboom.com/architecture/notahotel-sales-mountaintop-villa-snohetta-japanese-ski-resort-08-26-2025/ #فيلا #جبال #تزلج #عمارة #NatureDesign
    NOT A HOTEL starts sales for mountaintop villa by snøhetta at japanese ski resort
    www.designboom.com
    scheduled to open in spring 2029, the property is the company’s largest to date. The post NOT A HOTEL starts sales for mountaintop villa by snøhetta at japanese ski resort appeared first on designboom | architecture & design magazine.
    Like
    Love
    Wow
    Sad
    Angry
    1كيلو بايت
    · 1 التعليقات ·0 المشاركات
  • سلام يا أصحاب! ☕️

    سمعتوا بلي SoftBank اليابانية رايحة تطلق سندات جديدة مدتها 35 سنة؟ المبلغ مش بسيط، حوالى 679 مليون دولار بالين! الفكرة هذي تفتح لنا أبواب جديدة في عالم المال والاستثمار، وتشهد على قوة الشركات الكبيرة في السوق.

    شخصياً، دايماً كنت متعجب من كيف الشركات تقدر تدير هكذا معاملات ضخمة. نشوفها فرصة للناس اللي حابة تدخل في عالم الاستثمار أو تبحث عن آفاق جديدة.

    بزاف يمدحوا في اليابان وتطوّراتها، وهادي فرصة زينة باش نفكروا في كيفية استغلال هالمجالات المالية في حياتنا اليومية.

    https://forbesmiddleeast.com/money/banking-finance/softbank-to-issue-yen-denominated-subordinated-bond-worth-$679m

    #استثمار #SoftBank #سندات #Japan #مال
    سلام يا أصحاب! ☕️ سمعتوا بلي SoftBank اليابانية رايحة تطلق سندات جديدة مدتها 35 سنة؟ المبلغ مش بسيط، حوالى 679 مليون دولار بالين! 😲 الفكرة هذي تفتح لنا أبواب جديدة في عالم المال والاستثمار، وتشهد على قوة الشركات الكبيرة في السوق. شخصياً، دايماً كنت متعجب من كيف الشركات تقدر تدير هكذا معاملات ضخمة. نشوفها فرصة للناس اللي حابة تدخل في عالم الاستثمار أو تبحث عن آفاق جديدة. بزاف يمدحوا في اليابان وتطوّراتها، وهادي فرصة زينة باش نفكروا في كيفية استغلال هالمجالات المالية في حياتنا اليومية. https://forbesmiddleeast.com/money/banking-finance/softbank-to-issue-yen-denominated-subordinated-bond-worth-$679m #استثمار #SoftBank #سندات #Japan #مال
    forbesmiddleeast.com
    Japan's SoftBank Group To Issue 35-Years Yen-Denominated Bonds, Reportedly Worth $679M
    Like
    Love
    Wow
    Sad
    Angry
    670
    · 1 التعليقات ·0 المشاركات
  • يا جماعة، واش راكم ديرين؟ اليوم جبتلكم خبر يفرح قلوب محبي الألعاب!

    المقال الجديد يتحدث على تصنيفات الألعاب في اليابان، والأخبار تقول بلي Mario Kart World رايح بصح يهز الدنيا! بعد فترة قصيرة، Famitsu خرجت بالإحصائيات، وMario Kart باعت أكثر من 144,911 نسخة في 14 يوم فقط، وهو الشي اللي خلاه يتخطى Donkey Kong Bananza وكأنه كاين في سباق. SEGA كذلك عاودت طلعت مع Demon Slayer، ومش بعيد Super Mario Party جابت الناس للجمعة.

    شخصياً، كل ما نلعب Mario Kart، نحس وكأني في سباق حقيقي مع الأصحاب، الضحك والفرحة ما تفوتش!

    الموضوع هذا يخلينا نفكر في كيف الألعاب تكون جزء من حياتنا اليومية، والكثير منا يلقاها فرصة للترفيه والتواصل مع الأصدقاء.

    للي حاب يقرا المقال كاملاً، هذا هو الرابط: https://www.nintendolife.com/news/2025/08/japanese-ch
    💥 يا جماعة، واش راكم ديرين؟ اليوم جبتلكم خبر يفرح قلوب محبي الألعاب! 🎮 المقال الجديد يتحدث على تصنيفات الألعاب في اليابان، والأخبار تقول بلي Mario Kart World رايح بصح يهز الدنيا! بعد فترة قصيرة، Famitsu خرجت بالإحصائيات، وMario Kart باعت أكثر من 144,911 نسخة في 14 يوم فقط، وهو الشي اللي خلاه يتخطى Donkey Kong Bananza وكأنه كاين في سباق. SEGA كذلك عاودت طلعت مع Demon Slayer، ومش بعيد Super Mario Party جابت الناس للجمعة. شخصياً، كل ما نلعب Mario Kart، نحس وكأني في سباق حقيقي مع الأصحاب، الضحك والفرحة ما تفوتش! 🎉 الموضوع هذا يخلينا نفكر في كيف الألعاب تكون جزء من حياتنا اليومية، والكثير منا يلقاها فرصة للترفيه والتواصل مع الأصدقاء. للي حاب يقرا المقال كاملاً، هذا هو الرابط: https://www.nintendolife.com/news/2025/08/japanese-ch
    www.nintendolife.com
    Is there anyone else out there?After a short break, Famitsu has published the estimated Japanese physical game sales chart for the last two weeks, and Mario Kart World is absolutely smashing it.The Switch 2 launch title put up an additional 144,911 s
    Like
    Love
    Wow
    Sad
    Angry
    1كيلو بايت
    · 1 التعليقات ·0 المشاركات
  • RIKEN, Japan’s Leading Science Institute, Taps Fujitsu and NVIDIA for Next Flagship Supercomputer

    Japan is once again building a landmark high-performance computing system — not simply by chasing speed, but by rethinking how technology can best serve the nation’s most urgent scientific needs.
    At the FugakuNEXT International Initiative Launch Ceremony held in Tokyo on Aug. 22, leaders from RIKEN, Japan’s top research institute, announced the start of an international collaboration with Fujitsu and NVIDIA to co-design FugakuNEXT, the successor to the world-renowned supercomputer, Fugaku.
    Awarded early in the process, the contract enables the partners to work side by side in shaping the system’s architecture to address Japan’s most critical research priorities — from earth systems modeling and disaster resilience to drug discovery and advanced manufacturing.
    More than an upgrade, the effort will highlight Japan’s embrace of modern AI and showcase Japanese innovations that can be harnessed by researchers and enterprises across the globe.
    The ceremony featured remarks from the initiative’s leaders, RIKEN President Makoto Gonokami and Satoshi Matsuoka, director of the RIKEN Center for Computational Science and one of Japan’s most respected high-performance computing architects.
    Fujitsu Chief Technology Officer Vivek Mahajan attended, emphasizing the company’s role in advancing Japan’s computing capabilities.
    Ian Buck, vice president of hyperscale and high-performance computing at NVIDIA, attended in person as well to discuss the collaborative design approach and how the resulting platform will serve as a foundation for innovation well into the next decade.
    Momentum has been building. When NVIDIA founder and CEO Jensen Huang touched down in Tokyo last year, he called on Japan to seize the moment — to put NVIDIA’s latest technologies to work building its own AI, on its own soil, with its own infrastructure.
    FugakuNEXT answers that call, drawing on NVIDIA’s whole software stack —  from NVIDIA CUDA-X libraries such as NVIDIA cuQuantum for quantum simulation, RAPIDS for data science, NVIDIA TensorRT for high-performance inference and NVIDIA NeMo for large language model development, to other domain-specific software development kits tailored for science and industry.
    Innovations pioneered on FugakuNEXT could become blueprints for the world.
    What’s Inside
    FugakuNEXT will be a hybrid AI-HPC system, combining simulation and AI workloads.
    It will feature FUJITSU-MONAKA-X CPUs, which can be paired with NVIDIA technologies using NVLink Fusion, new silicon enabling high-bandwidth connections between Fujitsu’s CPUs and NVIDIA’s architecture.
    The system will be built for speed, scale and efficiency.
    What It Will Do
    FugakuNEXT will support a wide range of applications — such as automating hypothesis generation, code creation and experiment simulation.

    Scientific research: Accelerating simulations with surrogate models and physics-informed neural networks.
    Manufacturing: Using AI to learn from simulations to generate efficient and aesthetically pleasing designs faster than ever before.
    Earth systems modeling: aiding disaster preparedness and prediction for earthquakes and severe weather, and more.

    RIKEN, Fujitsu and NVIDIA will collaborate on software developments, including tools for mixed-precision computing, continuous benchmarking, and performance optimization.
    FugakuNEXT isn’t just a technical upgrade — it’s a strategic investment in Japan’s future.
    Backed by Japan’s MEXT, it will serve universities, government agencies, and industry partners nationwide.
    It marks the start of a new era in Japanese supercomputing — one built on sovereign infrastructure, global collaboration, and a commitment to scientific leadership.
    Image courtesy of RIKEN
    #riken #japans #leading #science #institute
    RIKEN, Japan’s Leading Science Institute, Taps Fujitsu and NVIDIA for Next Flagship Supercomputer
    Japan is once again building a landmark high-performance computing system — not simply by chasing speed, but by rethinking how technology can best serve the nation’s most urgent scientific needs. At the FugakuNEXT International Initiative Launch Ceremony held in Tokyo on Aug. 22, leaders from RIKEN, Japan’s top research institute, announced the start of an international collaboration with Fujitsu and NVIDIA to co-design FugakuNEXT, the successor to the world-renowned supercomputer, Fugaku. Awarded early in the process, the contract enables the partners to work side by side in shaping the system’s architecture to address Japan’s most critical research priorities — from earth systems modeling and disaster resilience to drug discovery and advanced manufacturing. More than an upgrade, the effort will highlight Japan’s embrace of modern AI and showcase Japanese innovations that can be harnessed by researchers and enterprises across the globe. The ceremony featured remarks from the initiative’s leaders, RIKEN President Makoto Gonokami and Satoshi Matsuoka, director of the RIKEN Center for Computational Science and one of Japan’s most respected high-performance computing architects. Fujitsu Chief Technology Officer Vivek Mahajan attended, emphasizing the company’s role in advancing Japan’s computing capabilities. Ian Buck, vice president of hyperscale and high-performance computing at NVIDIA, attended in person as well to discuss the collaborative design approach and how the resulting platform will serve as a foundation for innovation well into the next decade. Momentum has been building. When NVIDIA founder and CEO Jensen Huang touched down in Tokyo last year, he called on Japan to seize the moment — to put NVIDIA’s latest technologies to work building its own AI, on its own soil, with its own infrastructure. FugakuNEXT answers that call, drawing on NVIDIA’s whole software stack —  from NVIDIA CUDA-X libraries such as NVIDIA cuQuantum for quantum simulation, RAPIDS for data science, NVIDIA TensorRT for high-performance inference and NVIDIA NeMo for large language model development, to other domain-specific software development kits tailored for science and industry. Innovations pioneered on FugakuNEXT could become blueprints for the world. What’s Inside FugakuNEXT will be a hybrid AI-HPC system, combining simulation and AI workloads. It will feature FUJITSU-MONAKA-X CPUs, which can be paired with NVIDIA technologies using NVLink Fusion, new silicon enabling high-bandwidth connections between Fujitsu’s CPUs and NVIDIA’s architecture. The system will be built for speed, scale and efficiency. What It Will Do FugakuNEXT will support a wide range of applications — such as automating hypothesis generation, code creation and experiment simulation. Scientific research: Accelerating simulations with surrogate models and physics-informed neural networks. Manufacturing: Using AI to learn from simulations to generate efficient and aesthetically pleasing designs faster than ever before. Earth systems modeling: aiding disaster preparedness and prediction for earthquakes and severe weather, and more. RIKEN, Fujitsu and NVIDIA will collaborate on software developments, including tools for mixed-precision computing, continuous benchmarking, and performance optimization. FugakuNEXT isn’t just a technical upgrade — it’s a strategic investment in Japan’s future. Backed by Japan’s MEXT, it will serve universities, government agencies, and industry partners nationwide. It marks the start of a new era in Japanese supercomputing — one built on sovereign infrastructure, global collaboration, and a commitment to scientific leadership. Image courtesy of RIKEN #riken #japans #leading #science #institute
    RIKEN, Japan’s Leading Science Institute, Taps Fujitsu and NVIDIA for Next Flagship Supercomputer
    blogs.nvidia.com
    Japan is once again building a landmark high-performance computing system — not simply by chasing speed, but by rethinking how technology can best serve the nation’s most urgent scientific needs. At the FugakuNEXT International Initiative Launch Ceremony held in Tokyo on Aug. 22, leaders from RIKEN, Japan’s top research institute, announced the start of an international collaboration with Fujitsu and NVIDIA to co-design FugakuNEXT, the successor to the world-renowned supercomputer, Fugaku. Awarded early in the process, the contract enables the partners to work side by side in shaping the system’s architecture to address Japan’s most critical research priorities — from earth systems modeling and disaster resilience to drug discovery and advanced manufacturing. More than an upgrade, the effort will highlight Japan’s embrace of modern AI and showcase Japanese innovations that can be harnessed by researchers and enterprises across the globe. The ceremony featured remarks from the initiative’s leaders, RIKEN President Makoto Gonokami and Satoshi Matsuoka, director of the RIKEN Center for Computational Science and one of Japan’s most respected high-performance computing architects. Fujitsu Chief Technology Officer Vivek Mahajan attended, emphasizing the company’s role in advancing Japan’s computing capabilities. Ian Buck, vice president of hyperscale and high-performance computing at NVIDIA, attended in person as well to discuss the collaborative design approach and how the resulting platform will serve as a foundation for innovation well into the next decade. Momentum has been building. When NVIDIA founder and CEO Jensen Huang touched down in Tokyo last year, he called on Japan to seize the moment — to put NVIDIA’s latest technologies to work building its own AI, on its own soil, with its own infrastructure. FugakuNEXT answers that call, drawing on NVIDIA’s whole software stack —  from NVIDIA CUDA-X libraries such as NVIDIA cuQuantum for quantum simulation, RAPIDS for data science, NVIDIA TensorRT for high-performance inference and NVIDIA NeMo for large language model development, to other domain-specific software development kits tailored for science and industry. Innovations pioneered on FugakuNEXT could become blueprints for the world. What’s Inside FugakuNEXT will be a hybrid AI-HPC system, combining simulation and AI workloads. It will feature FUJITSU-MONAKA-X CPUs, which can be paired with NVIDIA technologies using NVLink Fusion, new silicon enabling high-bandwidth connections between Fujitsu’s CPUs and NVIDIA’s architecture. The system will be built for speed, scale and efficiency. What It Will Do FugakuNEXT will support a wide range of applications — such as automating hypothesis generation, code creation and experiment simulation. Scientific research: Accelerating simulations with surrogate models and physics-informed neural networks. Manufacturing: Using AI to learn from simulations to generate efficient and aesthetically pleasing designs faster than ever before. Earth systems modeling: aiding disaster preparedness and prediction for earthquakes and severe weather, and more. RIKEN, Fujitsu and NVIDIA will collaborate on software developments, including tools for mixed-precision computing, continuous benchmarking, and performance optimization. FugakuNEXT isn’t just a technical upgrade — it’s a strategic investment in Japan’s future. Backed by Japan’s MEXT (Ministry of Education, Culture, Sports, Science and Technology), it will serve universities, government agencies, and industry partners nationwide. It marks the start of a new era in Japanese supercomputing — one built on sovereign infrastructure, global collaboration, and a commitment to scientific leadership. Image courtesy of RIKEN
    2 التعليقات ·0 المشاركات
  • يا جماعة، واش راكم؟ اليوم حبيت نهدر على موضوع يهم الجميع، خاصة مع الوضعية الاقتصادية اللي نعيشوها.

    سمعتوا بلي صادرات اليابان ولات في أقل مستوى لها منذ 4 سنين، وهادي كاينة في تقرير جاي من Forbes. في يوليو، بلغت الصادرات 63.4 مليار دولار، والسبب هو تأثير التعريفات الجمركية الأمريكية. يعني الأزمة الاقتصادية كيبان تأثيرها على الدول الكبار كيما اليابان.

    شخصياً، نشوف بلي هاد الشي يخلينا نفكروا في كيفية تأقلمنا مع التغيرات الاقتصادية. كيما كي نواجهوا صعوبات في حياتنا اليومية، الدول زادة عندها تحديات.

    خلونا نفكروا في المستقبل وكيفاش نقدروا نتجاوزوا هاد الصعوبات ونبنيوا اقتصادات قوية.

    https://forbesmiddleeast.com/industry/economy/japans-exports-hit-four-year-low-as-us-tariffs-bite
    #اقتصاد #Japan #Exports #Tariffs #تجارة
    يا جماعة، واش راكم؟ اليوم حبيت نهدر على موضوع يهم الجميع، خاصة مع الوضعية الاقتصادية اللي نعيشوها. سمعتوا بلي صادرات اليابان ولات في أقل مستوى لها منذ 4 سنين، وهادي كاينة في تقرير جاي من Forbes. في يوليو، بلغت الصادرات 63.4 مليار دولار، والسبب هو تأثير التعريفات الجمركية الأمريكية. يعني الأزمة الاقتصادية كيبان تأثيرها على الدول الكبار كيما اليابان. شخصياً، نشوف بلي هاد الشي يخلينا نفكروا في كيفية تأقلمنا مع التغيرات الاقتصادية. كيما كي نواجهوا صعوبات في حياتنا اليومية، الدول زادة عندها تحديات. خلونا نفكروا في المستقبل وكيفاش نقدروا نتجاوزوا هاد الصعوبات ونبنيوا اقتصادات قوية. https://forbesmiddleeast.com/industry/economy/japans-exports-hit-four-year-low-as-us-tariffs-bite #اقتصاد #Japan #Exports #Tariffs #تجارة
    forbesmiddleeast.com
    Japan’s Exports Drop To 4-Year Low Of $63.4B In July Amid US Tariff Impact
    1 التعليقات ·0 المشاركات
  • يا جماعة، عندي خبر زين راح يفرح بزاف منكم!

    حسب تسريبات جديدة، فرقة Gorillaz راح تدخل لعالم Fortnite! تصوروا كيفاش راح تصير أجواء اللعب مع الموسيقى والأجواء الغريبة للفرقة. مش بس هذا، كاين أخبار أخرى على Forza يلي ممكن يكون في اليابان، وDeep Rock Galactic Survivor جاي للـXbox، وحتّى Analogue N64 تأجل مرة أخرى.

    أنا شخصياً، نحب كيفاش Fortnite دايماً يجدد المحتوى متاعه ويجيب شخصيات جديدة. كل مرة تكون تجربة فريدة، ونتمنى نشوف كيفاش Gorillaz راح يضيفوا لمسة خاصة للعبة.

    خليكم دايمًا على اطلاع، وخلّونا نعيشوا هالتجربة مع بعض!

    https://kotaku.com/gorillaz-fornite-festival-leaks-forza-horizon-japan-xbox-sony-evo-analogue-2000619149

    #Fortnite #Gorillaz #GamingNews #JeuxVidéo #CultureGaming
    يا جماعة، عندي خبر زين راح يفرح بزاف منكم! 🎮 حسب تسريبات جديدة، فرقة Gorillaz راح تدخل لعالم Fortnite! تصوروا كيفاش راح تصير أجواء اللعب مع الموسيقى والأجواء الغريبة للفرقة. مش بس هذا، كاين أخبار أخرى على Forza يلي ممكن يكون في اليابان، وDeep Rock Galactic Survivor جاي للـXbox، وحتّى Analogue N64 تأجل مرة أخرى. أنا شخصياً، نحب كيفاش Fortnite دايماً يجدد المحتوى متاعه ويجيب شخصيات جديدة. كل مرة تكون تجربة فريدة، ونتمنى نشوف كيفاش Gorillaz راح يضيفوا لمسة خاصة للعبة. خليكم دايمًا على اطلاع، وخلّونا نعيشوا هالتجربة مع بعض! https://kotaku.com/gorillaz-fornite-festival-leaks-forza-horizon-japan-xbox-sony-evo-analogue-2000619149 #Fortnite #Gorillaz #GamingNews #JeuxVidéo #CultureGaming
    The Gorillaz Are Coming To Fortnite According To New Leaks
    kotaku.com
    Plus: the next Forza might be set in Japan, Deep Rock Galactic Survivor is heading to Xbox, the Analogue N64 is delayed again, and more The post The Gorillaz Are Coming To <i>Fortnite</i> According To New Leaks appeared first on Kotaku.
    1 التعليقات ·0 المشاركات
  • Gearing Up for the Gigawatt Data Center Age

    Across the globe, AI factories are rising — massive new data centers built not to serve up web pages or email, but to train and deploy intelligence itself. Internet giants have invested billions in cloud-scale AI infrastructure for their customers. Companies are racing to build AI foundries that will spawn the next generation of products and services. Governments are investing too, eager to harness AI for personalized medicine and language services tailored to national populations.
    Welcome to the age of AI factories — where the rules are being rewritten and the wiring doesn’t look anything like the old internet. These aren’t typical hyperscale data centers. They’re something else entirely. Think of them as high-performance engines stitched together from tens to hundreds of thousands of GPUs — not just built, but orchestrated, operated and activated as a single unit. And that orchestration? It’s the whole game.
    This giant data center has become the new unit of computing, and the way these GPUs are connected defines what this unit of computing can do. One network architecture won’t cut it. What’s needed is a layered design with bleeding-edge technologies — like co-packaged optics that once seemed like science fiction.
    The complexity isn’t a bug; it’s the defining feature. AI infrastructure is diverging fast from everything that came before it, and if there isn’t rethinking on how the pipes connect, scale breaks down. Get the network layers wrong, and the whole machine grinds to a halt. Get it right, and gain extraordinary performance.
    With that shift comes weight — literally. A decade ago, chips were built to be sleek and lightweight. Now, the cutting edge looks like the multi‑hundred‑pound copper spine of a server rack. Liquid-cooled manifolds. Custom busbars. Copper spines. AI now demands massive, industrial-scale hardware. And the deeper the models go, the more these machines scale up, and out.
    The NVIDIA NVLink spine, for example, is built from over 5,000 coaxial cables — tightly wound and precisely routed. It moves more data per second than the entire internet. That’s 130 TB/s of GPU-to-GPU bandwidth, fully meshed.
    This isn’t just fast. It’s foundational. The AI super-highway now lives inside the rack.
    The Data Center Is the Computer

    Training the modern large language modelsbehind AI isn’t about burning cycles on a single machine. It’s about orchestrating the work of tens or even hundreds of thousands of GPUs that are the heavy lifters of AI computation.
    These systems rely on distributed computing, splitting massive calculations across nodes, where each node handles a slice of the workload. In training, those slices — typically massive matrices of numbers — need to be regularly merged and updated. That merging occurs through collective operations, such as “all-reduce”and “all-to-all”.
    These processes are susceptible to the speed and responsiveness of the network — what engineers call latencyand bandwidth— causing stalls in training.
    For inference — the process of running trained models to generate answers or predictions — the challenges flip. Retrieval-augmented generation systems, which combine LLMs with search, demand real-time lookups and responses. And in cloud environments, multi-tenant inference means keeping workloads from different customers running smoothly, without interference. That requires lightning-fast, high-throughput networking that can handle massive demand with strict isolation between users.
    Traditional Ethernet was designed for single-server workloads — not for the demands of distributed AI. Tolerating jitter and inconsistent delivery were once acceptable. Now, it’s a bottleneck. Traditional Ethernet switch architectures were never designed for consistent, predictable performance — and that legacy still shapes their latest generations.
    Distributed computing requires a scale-out infrastructure built for zero-jitter operation — one that can handle bursts of extreme throughput, deliver low latency, maintain predictable and consistent RDMA performance, and isolate network noise. This is why InfiniBand networking is the gold standard for high-performance computing supercomputers and AI factories.
    With NVIDIA Quantum InfiniBand, collective operations run inside the network itself using Scalable Hierarchical Aggregation and Reduction Protocol technology, doubling data bandwidth for reductions. It uses adaptive routing and telemetry-based congestion control to spread flows across paths, guarantee deterministic bandwidth and isolate noise. These optimizations let InfiniBand scale AI communication with precision. It’s why NVIDIA Quantum infrastructure connects the majority of the systems on the TOP500 list of the world’s most powerful supercomputers, demonstrating 35% growth in just two years.
    For clusters spanning dozens of racks, NVIDIA Quantum‑X800 Infiniband switches push InfiniBand to new heights. Each switch provides 144 ports of 800 Gbps connectivity, featuring hardware-based SHARPv4, adaptive routing and telemetry-based congestion control. The platform integrates co‑packaged silicon photonics to minimize the distance between electronics and optics, reducing power consumption and latency. Paired with NVIDIA ConnectX-8 SuperNICs delivering 800 Gb/s per GPU, this fabric links trillion-parameter models and drives in-network compute.
    But hyperscalers and enterprises have invested billions in their Ethernet software infrastructure. They need a quick path forward that uses the existing ecosystem for AI workloads. Enter NVIDIA Spectrum‑X: a new kind of Ethernet purpose-built for distributed AI.
    Spectrum‑X Ethernet: Bringing AI to the Enterprise

    Spectrum‑X reimagines Ethernet for AI. Launched in 2023 Spectrum‑X delivers lossless networking, adaptive routing and performance isolation. The SN5610 switch, based on the Spectrum‑4 ASIC, supports port speeds up to 800 Gb/s and uses NVIDIA’s congestion control to maintain 95% data throughput at scale.
    Spectrum‑X is fully standards‑based Ethernet. In addition to supporting Cumulus Linux, it supports the open‑source SONiC network operating system — giving customers flexibility. A key ingredient is NVIDIA SuperNICs — based on NVIDIA BlueField-3 or ConnectX-8 — which provide up to 800 Gb/s RoCE connectivity and offload packet reordering and congestion management.
    Spectrum-X brings InfiniBand’s best innovations — like telemetry-driven congestion control, adaptive load balancing and direct data placement — to Ethernet, enabling enterprises to scale to hundreds of thousands of GPUs. Large-scale systems with Spectrum‑X, including the world’s most colossal AI supercomputer, have achieved 95% data throughput with zero application latency degradation. Standard Ethernet fabrics would deliver only ~60% throughput due to flow collisions.
    A Portfolio for Scale‑Up and Scale‑Out
    No single network can serve every layer of an AI factory. NVIDIA’s approach is to match the right fabric to the right tier, then tie everything together with software and silicon.
    NVLink: Scale Up Inside the Rack
    Inside a server rack, GPUs need to talk to each other as if they were different cores on the same chip. NVIDIA NVLink and NVLink Switch extend GPU memory and bandwidth across nodes. In an NVIDIA GB300 NVL72 system, 36 NVIDIA Grace CPUs and 72 NVIDIA Blackwell Ultra GPUs are connected in a single NVLink domain, with an aggregate bandwidth of 130 TB/s. NVLink Switch technology further extends this fabric: a single GB300 NVL72 system can offer 130 TB/s of GPU bandwidth, enabling clusters to support 9x the GPU count of a single 8‑GPU server. With NVLink, the entire rack becomes one large GPU.
    Photonics: The Next Leap

    To reach million‑GPU AI factories, the network must break the power and density limits of pluggable optics. NVIDIA Quantum-X and Spectrum-X Photonics switches integrate silicon photonics directly into the switch package, delivering 128 to 512 ports of 800 Gb/s with total bandwidths ranging from 100 Tb/s to 400 Tb/s. These switches offer 3.5x more power efficiency and 10x better resiliency compared with traditional optics, paving the way for gigawatt‑scale AI factories.

    Delivering on the Promise of Open Standards

    Spectrum‑X and NVIDIA Quantum InfiniBand are built on open standards. Spectrum‑X is fully standards‑based Ethernet with support for open Ethernet stacks like SONiC, while NVIDIA Quantum InfiniBand and Spectrum-X conform to the InfiniBand Trade Association’s InfiniBand and RDMA over Converged Ethernetspecifications. Key elements of NVIDIA’s software stack — including NCCL and DOCA libraries — run on a variety of hardware, and partners such as Cisco, Dell Technologies, HPE and Supermicro integrate Spectrum-X into their systems.

    Open standards create the foundation for interoperability, but real-world AI clusters require tight optimization across the entire stack — GPUs, NICs, switches, cables and software. Vendors that invest in end‑to‑end integration deliver better latency and throughput. SONiC, the open‑source network operating system hardened in hyperscale data centers, eliminates licensing and vendor lock‑in and allows intense customization, but operators still choose purpose‑built hardware and software bundles to meet AI’s performance needs. In practice, open standards alone don’t deliver deterministic performance; they need innovation layered on top.

    Toward Million‑GPU AI Factories
    AI factories are scaling fast. Governments in Europe are building seven national AI factories, while cloud providers and enterprises across Japan, India and Norway are rolling out NVIDIA‑powered AI infrastructure. The next horizon is gigawatt‑class facilities with a million GPUs. To get there, the network must evolve from an afterthought to a pillar of AI infrastructure.
    The lesson from the gigawatt data center age is simple: the data center is now the computer. NVLink stitches together GPUs inside the rack. NVIDIA Quantum InfiniBand scales them across it. Spectrum-X brings that performance to broader markets. Silicon photonics makes it sustainable. Everything is open where it matters, optimized where it counts.
     
     

     
    #gearing #gigawatt #data #center #age
    Gearing Up for the Gigawatt Data Center Age
    Across the globe, AI factories are rising — massive new data centers built not to serve up web pages or email, but to train and deploy intelligence itself. Internet giants have invested billions in cloud-scale AI infrastructure for their customers. Companies are racing to build AI foundries that will spawn the next generation of products and services. Governments are investing too, eager to harness AI for personalized medicine and language services tailored to national populations. Welcome to the age of AI factories — where the rules are being rewritten and the wiring doesn’t look anything like the old internet. These aren’t typical hyperscale data centers. They’re something else entirely. Think of them as high-performance engines stitched together from tens to hundreds of thousands of GPUs — not just built, but orchestrated, operated and activated as a single unit. And that orchestration? It’s the whole game. This giant data center has become the new unit of computing, and the way these GPUs are connected defines what this unit of computing can do. One network architecture won’t cut it. What’s needed is a layered design with bleeding-edge technologies — like co-packaged optics that once seemed like science fiction. The complexity isn’t a bug; it’s the defining feature. AI infrastructure is diverging fast from everything that came before it, and if there isn’t rethinking on how the pipes connect, scale breaks down. Get the network layers wrong, and the whole machine grinds to a halt. Get it right, and gain extraordinary performance. With that shift comes weight — literally. A decade ago, chips were built to be sleek and lightweight. Now, the cutting edge looks like the multi‑hundred‑pound copper spine of a server rack. Liquid-cooled manifolds. Custom busbars. Copper spines. AI now demands massive, industrial-scale hardware. And the deeper the models go, the more these machines scale up, and out. The NVIDIA NVLink spine, for example, is built from over 5,000 coaxial cables — tightly wound and precisely routed. It moves more data per second than the entire internet. That’s 130 TB/s of GPU-to-GPU bandwidth, fully meshed. This isn’t just fast. It’s foundational. The AI super-highway now lives inside the rack. The Data Center Is the Computer Training the modern large language modelsbehind AI isn’t about burning cycles on a single machine. It’s about orchestrating the work of tens or even hundreds of thousands of GPUs that are the heavy lifters of AI computation. These systems rely on distributed computing, splitting massive calculations across nodes, where each node handles a slice of the workload. In training, those slices — typically massive matrices of numbers — need to be regularly merged and updated. That merging occurs through collective operations, such as “all-reduce”and “all-to-all”. These processes are susceptible to the speed and responsiveness of the network — what engineers call latencyand bandwidth— causing stalls in training. For inference — the process of running trained models to generate answers or predictions — the challenges flip. Retrieval-augmented generation systems, which combine LLMs with search, demand real-time lookups and responses. And in cloud environments, multi-tenant inference means keeping workloads from different customers running smoothly, without interference. That requires lightning-fast, high-throughput networking that can handle massive demand with strict isolation between users. Traditional Ethernet was designed for single-server workloads — not for the demands of distributed AI. Tolerating jitter and inconsistent delivery were once acceptable. Now, it’s a bottleneck. Traditional Ethernet switch architectures were never designed for consistent, predictable performance — and that legacy still shapes their latest generations. Distributed computing requires a scale-out infrastructure built for zero-jitter operation — one that can handle bursts of extreme throughput, deliver low latency, maintain predictable and consistent RDMA performance, and isolate network noise. This is why InfiniBand networking is the gold standard for high-performance computing supercomputers and AI factories. With NVIDIA Quantum InfiniBand, collective operations run inside the network itself using Scalable Hierarchical Aggregation and Reduction Protocol technology, doubling data bandwidth for reductions. It uses adaptive routing and telemetry-based congestion control to spread flows across paths, guarantee deterministic bandwidth and isolate noise. These optimizations let InfiniBand scale AI communication with precision. It’s why NVIDIA Quantum infrastructure connects the majority of the systems on the TOP500 list of the world’s most powerful supercomputers, demonstrating 35% growth in just two years. For clusters spanning dozens of racks, NVIDIA Quantum‑X800 Infiniband switches push InfiniBand to new heights. Each switch provides 144 ports of 800 Gbps connectivity, featuring hardware-based SHARPv4, adaptive routing and telemetry-based congestion control. The platform integrates co‑packaged silicon photonics to minimize the distance between electronics and optics, reducing power consumption and latency. Paired with NVIDIA ConnectX-8 SuperNICs delivering 800 Gb/s per GPU, this fabric links trillion-parameter models and drives in-network compute. But hyperscalers and enterprises have invested billions in their Ethernet software infrastructure. They need a quick path forward that uses the existing ecosystem for AI workloads. Enter NVIDIA Spectrum‑X: a new kind of Ethernet purpose-built for distributed AI. Spectrum‑X Ethernet: Bringing AI to the Enterprise Spectrum‑X reimagines Ethernet for AI. Launched in 2023 Spectrum‑X delivers lossless networking, adaptive routing and performance isolation. The SN5610 switch, based on the Spectrum‑4 ASIC, supports port speeds up to 800 Gb/s and uses NVIDIA’s congestion control to maintain 95% data throughput at scale. Spectrum‑X is fully standards‑based Ethernet. In addition to supporting Cumulus Linux, it supports the open‑source SONiC network operating system — giving customers flexibility. A key ingredient is NVIDIA SuperNICs — based on NVIDIA BlueField-3 or ConnectX-8 — which provide up to 800 Gb/s RoCE connectivity and offload packet reordering and congestion management. Spectrum-X brings InfiniBand’s best innovations — like telemetry-driven congestion control, adaptive load balancing and direct data placement — to Ethernet, enabling enterprises to scale to hundreds of thousands of GPUs. Large-scale systems with Spectrum‑X, including the world’s most colossal AI supercomputer, have achieved 95% data throughput with zero application latency degradation. Standard Ethernet fabrics would deliver only ~60% throughput due to flow collisions. A Portfolio for Scale‑Up and Scale‑Out No single network can serve every layer of an AI factory. NVIDIA’s approach is to match the right fabric to the right tier, then tie everything together with software and silicon. NVLink: Scale Up Inside the Rack Inside a server rack, GPUs need to talk to each other as if they were different cores on the same chip. NVIDIA NVLink and NVLink Switch extend GPU memory and bandwidth across nodes. In an NVIDIA GB300 NVL72 system, 36 NVIDIA Grace CPUs and 72 NVIDIA Blackwell Ultra GPUs are connected in a single NVLink domain, with an aggregate bandwidth of 130 TB/s. NVLink Switch technology further extends this fabric: a single GB300 NVL72 system can offer 130 TB/s of GPU bandwidth, enabling clusters to support 9x the GPU count of a single 8‑GPU server. With NVLink, the entire rack becomes one large GPU. Photonics: The Next Leap To reach million‑GPU AI factories, the network must break the power and density limits of pluggable optics. NVIDIA Quantum-X and Spectrum-X Photonics switches integrate silicon photonics directly into the switch package, delivering 128 to 512 ports of 800 Gb/s with total bandwidths ranging from 100 Tb/s to 400 Tb/s. These switches offer 3.5x more power efficiency and 10x better resiliency compared with traditional optics, paving the way for gigawatt‑scale AI factories. Delivering on the Promise of Open Standards Spectrum‑X and NVIDIA Quantum InfiniBand are built on open standards. Spectrum‑X is fully standards‑based Ethernet with support for open Ethernet stacks like SONiC, while NVIDIA Quantum InfiniBand and Spectrum-X conform to the InfiniBand Trade Association’s InfiniBand and RDMA over Converged Ethernetspecifications. Key elements of NVIDIA’s software stack — including NCCL and DOCA libraries — run on a variety of hardware, and partners such as Cisco, Dell Technologies, HPE and Supermicro integrate Spectrum-X into their systems. Open standards create the foundation for interoperability, but real-world AI clusters require tight optimization across the entire stack — GPUs, NICs, switches, cables and software. Vendors that invest in end‑to‑end integration deliver better latency and throughput. SONiC, the open‑source network operating system hardened in hyperscale data centers, eliminates licensing and vendor lock‑in and allows intense customization, but operators still choose purpose‑built hardware and software bundles to meet AI’s performance needs. In practice, open standards alone don’t deliver deterministic performance; they need innovation layered on top. Toward Million‑GPU AI Factories AI factories are scaling fast. Governments in Europe are building seven national AI factories, while cloud providers and enterprises across Japan, India and Norway are rolling out NVIDIA‑powered AI infrastructure. The next horizon is gigawatt‑class facilities with a million GPUs. To get there, the network must evolve from an afterthought to a pillar of AI infrastructure. The lesson from the gigawatt data center age is simple: the data center is now the computer. NVLink stitches together GPUs inside the rack. NVIDIA Quantum InfiniBand scales them across it. Spectrum-X brings that performance to broader markets. Silicon photonics makes it sustainable. Everything is open where it matters, optimized where it counts.       #gearing #gigawatt #data #center #age
    Gearing Up for the Gigawatt Data Center Age
    blogs.nvidia.com
    Across the globe, AI factories are rising — massive new data centers built not to serve up web pages or email, but to train and deploy intelligence itself. Internet giants have invested billions in cloud-scale AI infrastructure for their customers. Companies are racing to build AI foundries that will spawn the next generation of products and services. Governments are investing too, eager to harness AI for personalized medicine and language services tailored to national populations. Welcome to the age of AI factories — where the rules are being rewritten and the wiring doesn’t look anything like the old internet. These aren’t typical hyperscale data centers. They’re something else entirely. Think of them as high-performance engines stitched together from tens to hundreds of thousands of GPUs — not just built, but orchestrated, operated and activated as a single unit. And that orchestration? It’s the whole game. This giant data center has become the new unit of computing, and the way these GPUs are connected defines what this unit of computing can do. One network architecture won’t cut it. What’s needed is a layered design with bleeding-edge technologies — like co-packaged optics that once seemed like science fiction. The complexity isn’t a bug; it’s the defining feature. AI infrastructure is diverging fast from everything that came before it, and if there isn’t rethinking on how the pipes connect, scale breaks down. Get the network layers wrong, and the whole machine grinds to a halt. Get it right, and gain extraordinary performance. With that shift comes weight — literally. A decade ago, chips were built to be sleek and lightweight. Now, the cutting edge looks like the multi‑hundred‑pound copper spine of a server rack. Liquid-cooled manifolds. Custom busbars. Copper spines. AI now demands massive, industrial-scale hardware. And the deeper the models go, the more these machines scale up, and out. The NVIDIA NVLink spine, for example, is built from over 5,000 coaxial cables — tightly wound and precisely routed. It moves more data per second than the entire internet. That’s 130 TB/s of GPU-to-GPU bandwidth, fully meshed. This isn’t just fast. It’s foundational. The AI super-highway now lives inside the rack. The Data Center Is the Computer Training the modern large language models (LLMs) behind AI isn’t about burning cycles on a single machine. It’s about orchestrating the work of tens or even hundreds of thousands of GPUs that are the heavy lifters of AI computation. These systems rely on distributed computing, splitting massive calculations across nodes (individual servers), where each node handles a slice of the workload. In training, those slices — typically massive matrices of numbers — need to be regularly merged and updated. That merging occurs through collective operations, such as “all-reduce” (which combines data from all nodes and redistributes the result) and “all-to-all” (where each node exchanges data with every other node). These processes are susceptible to the speed and responsiveness of the network — what engineers call latency (delay) and bandwidth (data capacity) — causing stalls in training. For inference — the process of running trained models to generate answers or predictions — the challenges flip. Retrieval-augmented generation systems, which combine LLMs with search, demand real-time lookups and responses. And in cloud environments, multi-tenant inference means keeping workloads from different customers running smoothly, without interference. That requires lightning-fast, high-throughput networking that can handle massive demand with strict isolation between users. Traditional Ethernet was designed for single-server workloads — not for the demands of distributed AI. Tolerating jitter and inconsistent delivery were once acceptable. Now, it’s a bottleneck. Traditional Ethernet switch architectures were never designed for consistent, predictable performance — and that legacy still shapes their latest generations. Distributed computing requires a scale-out infrastructure built for zero-jitter operation — one that can handle bursts of extreme throughput, deliver low latency, maintain predictable and consistent RDMA performance, and isolate network noise. This is why InfiniBand networking is the gold standard for high-performance computing supercomputers and AI factories. With NVIDIA Quantum InfiniBand, collective operations run inside the network itself using Scalable Hierarchical Aggregation and Reduction Protocol technology, doubling data bandwidth for reductions. It uses adaptive routing and telemetry-based congestion control to spread flows across paths, guarantee deterministic bandwidth and isolate noise. These optimizations let InfiniBand scale AI communication with precision. It’s why NVIDIA Quantum infrastructure connects the majority of the systems on the TOP500 list of the world’s most powerful supercomputers, demonstrating 35% growth in just two years. For clusters spanning dozens of racks, NVIDIA Quantum‑X800 Infiniband switches push InfiniBand to new heights. Each switch provides 144 ports of 800 Gbps connectivity, featuring hardware-based SHARPv4, adaptive routing and telemetry-based congestion control. The platform integrates co‑packaged silicon photonics to minimize the distance between electronics and optics, reducing power consumption and latency. Paired with NVIDIA ConnectX-8 SuperNICs delivering 800 Gb/s per GPU, this fabric links trillion-parameter models and drives in-network compute. But hyperscalers and enterprises have invested billions in their Ethernet software infrastructure. They need a quick path forward that uses the existing ecosystem for AI workloads. Enter NVIDIA Spectrum‑X: a new kind of Ethernet purpose-built for distributed AI. Spectrum‑X Ethernet: Bringing AI to the Enterprise Spectrum‑X reimagines Ethernet for AI. Launched in 2023 Spectrum‑X delivers lossless networking, adaptive routing and performance isolation. The SN5610 switch, based on the Spectrum‑4 ASIC, supports port speeds up to 800 Gb/s and uses NVIDIA’s congestion control to maintain 95% data throughput at scale. Spectrum‑X is fully standards‑based Ethernet. In addition to supporting Cumulus Linux, it supports the open‑source SONiC network operating system — giving customers flexibility. A key ingredient is NVIDIA SuperNICs — based on NVIDIA BlueField-3 or ConnectX-8 — which provide up to 800 Gb/s RoCE connectivity and offload packet reordering and congestion management. Spectrum-X brings InfiniBand’s best innovations — like telemetry-driven congestion control, adaptive load balancing and direct data placement — to Ethernet, enabling enterprises to scale to hundreds of thousands of GPUs. Large-scale systems with Spectrum‑X, including the world’s most colossal AI supercomputer, have achieved 95% data throughput with zero application latency degradation. Standard Ethernet fabrics would deliver only ~60% throughput due to flow collisions. A Portfolio for Scale‑Up and Scale‑Out No single network can serve every layer of an AI factory. NVIDIA’s approach is to match the right fabric to the right tier, then tie everything together with software and silicon. NVLink: Scale Up Inside the Rack Inside a server rack, GPUs need to talk to each other as if they were different cores on the same chip. NVIDIA NVLink and NVLink Switch extend GPU memory and bandwidth across nodes. In an NVIDIA GB300 NVL72 system, 36 NVIDIA Grace CPUs and 72 NVIDIA Blackwell Ultra GPUs are connected in a single NVLink domain, with an aggregate bandwidth of 130 TB/s. NVLink Switch technology further extends this fabric: a single GB300 NVL72 system can offer 130 TB/s of GPU bandwidth, enabling clusters to support 9x the GPU count of a single 8‑GPU server. With NVLink, the entire rack becomes one large GPU. Photonics: The Next Leap To reach million‑GPU AI factories, the network must break the power and density limits of pluggable optics. NVIDIA Quantum-X and Spectrum-X Photonics switches integrate silicon photonics directly into the switch package, delivering 128 to 512 ports of 800 Gb/s with total bandwidths ranging from 100 Tb/s to 400 Tb/s. These switches offer 3.5x more power efficiency and 10x better resiliency compared with traditional optics, paving the way for gigawatt‑scale AI factories. Delivering on the Promise of Open Standards Spectrum‑X and NVIDIA Quantum InfiniBand are built on open standards. Spectrum‑X is fully standards‑based Ethernet with support for open Ethernet stacks like SONiC, while NVIDIA Quantum InfiniBand and Spectrum-X conform to the InfiniBand Trade Association’s InfiniBand and RDMA over Converged Ethernet (RoCE) specifications. Key elements of NVIDIA’s software stack — including NCCL and DOCA libraries — run on a variety of hardware, and partners such as Cisco, Dell Technologies, HPE and Supermicro integrate Spectrum-X into their systems. Open standards create the foundation for interoperability, but real-world AI clusters require tight optimization across the entire stack — GPUs, NICs, switches, cables and software. Vendors that invest in end‑to‑end integration deliver better latency and throughput. SONiC, the open‑source network operating system hardened in hyperscale data centers, eliminates licensing and vendor lock‑in and allows intense customization, but operators still choose purpose‑built hardware and software bundles to meet AI’s performance needs. In practice, open standards alone don’t deliver deterministic performance; they need innovation layered on top. Toward Million‑GPU AI Factories AI factories are scaling fast. Governments in Europe are building seven national AI factories, while cloud providers and enterprises across Japan, India and Norway are rolling out NVIDIA‑powered AI infrastructure. The next horizon is gigawatt‑class facilities with a million GPUs. To get there, the network must evolve from an afterthought to a pillar of AI infrastructure. The lesson from the gigawatt data center age is simple: the data center is now the computer. NVLink stitches together GPUs inside the rack. NVIDIA Quantum InfiniBand scales them across it. Spectrum-X brings that performance to broader markets. Silicon photonics makes it sustainable. Everything is open where it matters, optimized where it counts.      
    2 التعليقات ·0 المشاركات
  • حبيبي، واش راكم؟ اليوم جبتلكم خبر زعما يهم عالم البزنس! Blackstone، هذي الشركة الكبيرة اللي معروفة باستثماراتها الضخمة، جابت عرض Tender بقيمة 3.5 مليار دولار لـ TechnoPro اليابانية.

    يعني، Blackstone تحوس تدخل في عالم التكنولوجيا اليابانية، وهذا يدل على أهمية السوق هذا وكيش فكروا في التطور الرقمي. كاين فرص كبيرة في عالم التكنولوجيا، وهاد الاستثمارات تأكد لنا بلي الأمور رايحة للقدام.

    ش personally، نحب نشوف الشركات الكبيرة تتعاون مع نظيراتها في آسيا، حبي لعالم التكنولوجيا يزيد كل يوم! إذا كنت شغوف بالتكنولوجيا، يمكن هذي فرصة خير لك نزيدوا نتابعوا التطورات.

    ما تنساوش تشوفوا التفاصيل في الرابط!
    https://forbesmiddleeast.com/industry/business/blackstone-launches-$35b-tender-offer-for-japans-technopro

    #استثمار #تكنولوجيا #Blackstone #Japan #بزنس
    🚀 حبيبي، واش راكم؟ اليوم جبتلكم خبر زعما يهم عالم البزنس! Blackstone، هذي الشركة الكبيرة اللي معروفة باستثماراتها الضخمة، جابت عرض Tender بقيمة 3.5 مليار دولار لـ TechnoPro اليابانية. 🤯 يعني، Blackstone تحوس تدخل في عالم التكنولوجيا اليابانية، وهذا يدل على أهمية السوق هذا وكيش فكروا في التطور الرقمي. كاين فرص كبيرة في عالم التكنولوجيا، وهاد الاستثمارات تأكد لنا بلي الأمور رايحة للقدام. ش personally، نحب نشوف الشركات الكبيرة تتعاون مع نظيراتها في آسيا، حبي لعالم التكنولوجيا يزيد كل يوم! إذا كنت شغوف بالتكنولوجيا، يمكن هذي فرصة خير لك نزيدوا نتابعوا التطورات. ما تنساوش تشوفوا التفاصيل في الرابط! https://forbesmiddleeast.com/industry/business/blackstone-launches-$35b-tender-offer-for-japans-technopro #استثمار #تكنولوجيا #Blackstone #Japan #بزنس
    forbesmiddleeast.com
    Blackstone Launches $3.5B Tender Offer For Japan’s TechnoPro
    1 التعليقات ·0 المشاركات
  • سلام يا جماعة!

    اليوم حبيت نشارك معاكم موضوع مهم برشا، "After Hiroshima: The US Occupation of Japan". المقال يحكي على كيفاش بعد القصف النووي في هيروشيما، الولايات المتحدة احتلت اليابان وكيفاش هذا التغيير أثر على البلاد والثقافة.

    صراحة، عندي فضول كبير على كيفاش الدول تتجاوز الأزمات الكبيرة، وكيفاش تنجح في بناء مجتمعات جديدة بعد الحروب. كاين برشا دروس نقدروا نتعلموها من هالموقف.

    خلينا نفكروا مع بعضنا في كيفاش الأحداث التاريخية تشكل الهوية ديال الشعوب، وتعلمنا أهمية السلم والتعاون.

    https://www.historytoday.com/archive/feature/after-hiroshima-us-occupation-japan

    #تاريخ #JapaneseCulture #USJapanRelations #سلام #درس_في_الحياة
    سلام يا جماعة! 🌟 اليوم حبيت نشارك معاكم موضوع مهم برشا، "After Hiroshima: The US Occupation of Japan". المقال يحكي على كيفاش بعد القصف النووي في هيروشيما، الولايات المتحدة احتلت اليابان وكيفاش هذا التغيير أثر على البلاد والثقافة. صراحة، عندي فضول كبير على كيفاش الدول تتجاوز الأزمات الكبيرة، وكيفاش تنجح في بناء مجتمعات جديدة بعد الحروب. كاين برشا دروس نقدروا نتعلموها من هالموقف. خلينا نفكروا مع بعضنا في كيفاش الأحداث التاريخية تشكل الهوية ديال الشعوب، وتعلمنا أهمية السلم والتعاون. https://www.historytoday.com/archive/feature/after-hiroshima-us-occupation-japan #تاريخ #JapaneseCulture #USJapanRelations #سلام #درس_في_الحياة
    www.historytoday.com
    After Hiroshima: The US Occupation of Japan JamesHoare Thu, 08/21/2025 - 09:10
    1 التعليقات ·0 المشاركات
  • يا جماعة، شوفوا اليابان!

    الاقتصاد تاعها فاجأ الجميع وحقق نمو بـ 1% في الربع الثاني، وهذا بفضل الصادرات! يعني، رغم التحديات، اليابانيين أثبتوا باللي عندهم قوة كبيرة في السوق العالمية.

    من تجربتي، كيما نقول في دزاير "ما ضيعش وقتك في الكلام، خدم وعمل!"، اليابان تعكس هذي الفكرة. لما يكون لديك رؤية واضحة وتعمل بجد، تقدر تحقق نتائج رائعة حتى في أسوأ الظروف.

    خليونا نتعلم من تجارب الآخرين ونكون دايماً طموحين. حطوا أهدافكم واشتغلوا على روحكم، النجاح ما يجيش صدفة!

    https://forbesmiddleeast.com/industry/economy/japans-economy-expands-more-than-expected-at-1-in-q2-on-resilient-exports

    #اقتصاد #Japan #Exports #تحفيز #Mentorship
    🇯🇵💼 يا جماعة، شوفوا اليابان! 🇯🇵💼 الاقتصاد تاعها فاجأ الجميع وحقق نمو بـ 1% في الربع الثاني، وهذا بفضل الصادرات! يعني، رغم التحديات، اليابانيين أثبتوا باللي عندهم قوة كبيرة في السوق العالمية. من تجربتي، كيما نقول في دزاير "ما ضيعش وقتك في الكلام، خدم وعمل!"، اليابان تعكس هذي الفكرة. لما يكون لديك رؤية واضحة وتعمل بجد، تقدر تحقق نتائج رائعة حتى في أسوأ الظروف. خليونا نتعلم من تجارب الآخرين ونكون دايماً طموحين. حطوا أهدافكم واشتغلوا على روحكم، النجاح ما يجيش صدفة! https://forbesmiddleeast.com/industry/economy/japans-economy-expands-more-than-expected-at-1-in-q2-on-resilient-exports #اقتصاد #Japan #Exports #تحفيز #Mentorship
    forbesmiddleeast.com
    Japan’s Economy Outperforms Forecasts, Q2 Growth Hits 1% Driven By Exports
    1 التعليقات ·0 المشاركات
الصفحات المعززة
ollo https://www.ollo.ws